
Control System Toolbox™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Getting Started Guide
© COPYRIGHT 2000–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2002 First printing New Version 5.0 (Release 12)
June 2001 Second printing Revised for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Third printing Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)
September 2013 Online only Revised for Version 9.6 (Release 2013b)
March 2014 Online only Revised for Version 9.7 (Release 2014a)
October 2014 Online only Revised for Version 9.8 (Release 2014b)
March 2015 Online only Revised for Version 9.9 (Release 2015a)
September 2015 Online only Revised for Version 9.10 (Release 2015b)
March 2016 Online only Revised for Version 10.0 (Release 2016a)
September 2016 Online only Revised for Version 10.1 (Release 2016b)
March 2017 Online only Revised for Version 10.2 (Release 2017a)
September 2017 Online only Revised for Version 10.3 (Release 2017b)
March 2018 Online only Revised for Version 10.4 (Release 2018a)
September 2018 Online only Revised for Version 10.5 (Release 2018b)
March 2019 Online only Revised for Version 10.6 (Release 2019a)
September 2019 Online only Revised for Version 10.7 (Release 2019b)
March 2020 Online only Revised for Version 10.8 (Release 2020a)
September 2020 Online only Revised for Version 10.9 (Release 2020b)
March 2021 Online only Revised for Version 10.10 (Release 2021a)

Product Overview
1

Control System Toolbox Product Description . 1-2
Key Features . 1-2

Building Models
2

Linear (LTI) Models . 2-2
What Is a Plant? . 2-2
Linear Model Representations . 2-2
SISO Example: The DC Motor . 2-2
Building SISO Models . 2-4
Constructing Discrete Time Systems . 2-6
Adding Delays to Linear Models . 2-7
LTI Objects . 2-7

MIMO Models . 2-10
State-Space Model of Jet Transport Aircraft . 2-10
Constructing MIMO Transfer Functions . 2-11
Accessing I/O Pairs in MIMO Systems . 2-12

Arrays of Linear Models . 2-14

Model Characteristics . 2-16

Interconnecting Linear Models . 2-17
Arithmetic Operations for Interconnecting Models 2-17
Feedback Interconnections . 2-17

Converting Between Continuous- and Discrete- Time Systems 2-19
Available Commands for Continuous/Discrete Conversion 2-19
Available Methods for Continuous/Discrete Conversion 2-19
Digitizing the Discrete DC Motor Model . 2-19

Reducing Model Order . 2-21
Model Order Reduction Commands . 2-21
Techniques for Reducing Model Order . 2-21
Example: Gasifier Model . 2-21

v

Contents

Analyzing Models
3

Linear Analysis Using the Linear System Analyzer 3-2

Simulate Models with Arbitrary Inputs and Initial Conditions 3-6
What is the Linear Simulation Tool? . 3-6
Opening the Linear Simulation Tool . 3-6
Working with the Linear Simulation Tool . 3-6
Importing Input Signals . 3-8
Example: Loading Inputs from a Microsoft Excel Spreadsheet 3-10
Example: Importing Inputs from the Workspace 3-10
Designing Input Signals . 3-13
Specifying Initial Conditions . 3-15

Designing Compensators
4

Choosing a PID Controller Design Tool . 4-2

Designing PID Controllers with PID Tuner . 4-4
PID Tuner Overview . 4-4
PID Controller Type . 4-5
PID Controller Form . 4-8

Analyze Design in PID Tuner . 4-9
Plot System Responses . 4-9
View Numeric Values of System Characteristics 4-13
Refine the Design . 4-14

PID Controller Design for Fast Reference Tracking 4-16

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection (PID Tuner) . 4-23

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection (Command Line) . 4-32

Interactively Estimate Plant Parameters from Response Data 4-37

Preprocess Data . 4-46
Ways to Preprocess Data . 4-46
Remove Offset . 4-46
Scale Data . 4-47
Extract Data . 4-47
Filter Data . 4-47
Resample Data . 4-48
Replace Data . 4-48

PID Tuning Algorithm . 4-49

vi Contents

System Identification for PID Control . 4-50
Plant Identification . 4-50
Linear Approximation of Nonlinear Systems for PID Control 4-50
Linear Process Models . 4-51
Advanced System Identification Tasks . 4-51

Input/Output Data for Identification . 4-53
Data Preparation . 4-53
Data Preprocessing . 4-53

Choosing Identified Plant Structure . 4-54
Process Models . 4-54
State-Space Models . 4-57
Existing Plant Models . 4-58
Switching Between Model Structures . 4-59
Estimating Parameter Values . 4-60
Handling Initial Conditions . 4-60

Pole Placement . 4-62
State-Feedback Gain Selection . 4-62
State Estimator Design . 4-62
Pole Placement Tools . 4-63
Caution . 4-63

Linear-Quadratic-Gaussian (LQG) Design . 4-65
Linear-Quadratic-Gaussian (LQG) Design for Regulation 4-65
Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with Integral

Action . 4-68

Design an LQG Regulator . 4-72

Design an LQG Servo Controller . 4-75

Design an LQR Servo Controller in Simulink . 4-78
State-Space Equations for an Airframe . 4-78
Trimming . 4-79
Problem Definition . 4-79
Results . 4-80

State Estimation Using Time-Varying Kalman Filter 4-82

vii

Product Overview

1

Control System Toolbox Product Description
Design and analyze control systems

Control System Toolbox provides algorithms and apps for systematically analyzing, designing, and
tuning linear control systems. You can specify your system as a transfer function, state-space, zero-
pole-gain, or frequency-response model. Apps and functions, such as step response plot and Bode
plot, let you analyze and visualize system behavior in the time and frequency domains.

You can tune compensator parameters using interactive techniques such as Bode loop shaping and
the root locus method. The toolbox automatically tunes both SISO and MIMO compensators,
including PID controllers. Compensators can include multiple tunable blocks spanning several
feedback loops. You can tune gain-scheduled controllers and specify multiple tuning objectives, such
as reference tracking, disturbance rejection, and stability margins. You can validate your design by
verifying rise time, overshoot, settling time, gain and phase margins, and other requirements.

Key Features
• Transfer-function, state-space, zero-pole-gain, and frequency-response models of linear systems
• Step response, Nyquist plot, and other time-domain and frequency-domain tools for analyzing

stability and performance
• Automatic tuning of PID, gain-scheduled, and arbitrary SISO and MIMO control systems
• Root locus, Bode diagrams, LQR, LQG, and other classical and state-space design techniques
• Model representation conversion, continuous-time model discretization, and low-order

approximation of high-order systems

1 Product Overview

1-2

Building Models

• “Linear (LTI) Models” on page 2-2
• “MIMO Models” on page 2-10
• “Arrays of Linear Models” on page 2-14
• “Model Characteristics” on page 2-16
• “Interconnecting Linear Models” on page 2-17
• “Converting Between Continuous- and Discrete- Time Systems” on page 2-19
• “Reducing Model Order” on page 2-21

2

Linear (LTI) Models

What Is a Plant?
Typically, control engineers begin by developing a mathematical description of the dynamic system
that they want to control. The system to be controlled is called a plant. As an example of a plant, this
section uses the DC motor. This section develops the differential equations that describe the
electromechanical properties of a DC motor with an inertial load. It then shows you how to use the
Control System Toolbox functions to build linear models based on these equations.

Linear Model Representations
You can use Control System Toolbox functions to create the following model representations:

• State-space models (SS) of the form

dx
dt = Ax + Bu

y = Cx + Du

where A, B, C, and D are matrices of appropriate dimensions, x is the state vector, and u and y are
the input and output vectors.

• Transfer functions (TF), for example,

H(s) = s + 2
s2 + s + 10

• Zero-pole-gain (ZPK) models, for example,

H(z) = 3(z + 1 + j)(z + 1− j)
(z + 0.2)(z + 0.1)

• Frequency response data (FRD) models, which consist of sampled measurements of a system's
frequency response. For example, you can store experimentally collected frequency response data
in an FRD model.

Note The design of FRD models is a specialized subject that this topic does not address. See
“Frequency Response Data (FRD) Models” for a discussion of this topic.

SISO Example: The DC Motor
A simple model of a DC motor driving an inertial load shows the angular rate of the load, ω(t), as the
output and applied voltage, υapp(t), as the input. The ultimate goal of this example is to control the
angular rate by varying the applied voltage. This figure shows a simple model of the DC motor.

2 Building Models

2-2

A Simple Model of a DC Motor Driving an Inertial Load

In this model, the dynamics of the motor itself are idealized; for instance, the magnetic field is
assumed to be constant. The resistance of the circuit is denoted by R and the self-inductance of the
armature by L. If you are unfamiliar with the basics of DC motor modeling, consult any basic text on
physical modeling. With this simple model and basic laws of physics, it is possible to develop
differential equations that describe the behavior of this electromechanical system. In this example,
the relationships between electric potential and mechanical force are Faraday's law of induction and
Ampère's law for the force on a conductor moving through a magnetic field.

Mathematical Derivation

The torque τ seen at the shaft of the motor is proportional to the current i induced by the applied
voltage,

τ(t) = Kmi(t)

where Km, the armature constant, is related to physical properties of the motor, such as magnetic
field strength, the number of turns of wire around the conductor coil, and so on. The back (induced)
electromotive force, υemf , is a voltage proportional to the angular rate ω seen at the shaft,

υemf (t) = Kbω(t)

where Kb, the emf constant, also depends on certain physical properties of the motor.

The mechanical part of the motor equations is derived using Newton's law, which states that the
inertial load J times the derivative of angular rate equals the sum of all the torques about the motor
shaft. The result is this equation,

J dw
dt = ∑τi = − Kfω(t) + Kmi(t)

where Kfω is a linear approximation for viscous friction.

Finally, the electrical part of the motor equations can be described by

υapp(t)− υemf (t) = L di
dt + Ri(t)

 Linear (LTI) Models

2-3

or, solving for the applied voltage and substituting for the back emf,

υapp(t) = L di
dt + Ri(t) + Kbω(t)

This sequence of equations leads to a set of two differential equations that describe the behavior of
the motor, the first for the induced current,

di
dt = − R

L i(t)−
Kb
L ω(t) + 1

Lυapp(t)

and the second for the resulting angular rate,

dω
dt = − 1

J Kfω(t) + 1
J Kmi(t)

State-Space Equations for the DC Motor

Given the two differential equations derived in the last section, you can now develop a state-space
representation of the DC motor as a dynamic system. The current i and the angular rate ω are the
two states of the system. The applied voltage, υapp, is the input to the system, and the angular
velocity ω is the output.

d
dt

i
ω

=
−R

L −
Kb
L

Km
J −

Kf
J

⋅
i
ω

+
1
L
0
⋅ υapp(t)

y(t) = 0 1 ⋅
i
ω

+ 0 ⋅ υapp(t)

State-Space Representation of the DC Motor Example

Building SISO Models
After you develop a set of differential equations that describe your plant, you can construct SISO
models using simple commands. The following sections discuss

• Constructing a state-space model of the DC motor
• Converting between model representations
• Creating transfer function and zero/pole/gain models

Constructing a State-Space Model of the DC Motor

Enter the following nominal values for the various parameters of a DC motor.

R= 2.0 % Ohms
L= 0.5 % Henrys
Km = .015 % torque constant
Kb = .015 % emf constant
Kf = 0.2 % Nms
J= 0.02 % kg.m^2

Given these values, you can construct the numerical state-space representation using the ss function.

2 Building Models

2-4

A = [-R/L -Kb/L; Km/J -Kf/J]
B = [1/L; 0];
C = [0 1];
D = [0];
sys_dc = ss(A,B,C,D)

These commands return the following result:

a =
 x1 x2
 x1 -4 -0.03
 x2 0.75 -10

b =
 u1
 x1 2
 x2 0

c =
 x1 x2
 y1 0 1

d =
 u1
 y1 0

Converting Between Model Representations

Now that you have a state-space representation of the DC motor, you can convert to other model
representations, including transfer function (TF) and zero/pole/gain (ZPK) models.
Transfer Function Representation

You can use tf to convert from the state-space representation to the transfer function. For example,
use this code to convert to the transfer function representation of the DC motor.

sys_tf = tf(sys_dc)

Transfer function:
 1.5

s^2 + 14 s + 40.02

Zero/Pole/Gain Representation

Similarly, the zpk function converts from state-space or transfer function representations to the zero/
pole/gain format. Use this code to convert from the state-space representation to the zero/pole/gain
form for the DC motor.

sys_zpk = zpk(sys_dc)

Zero/pole/gain:
 1.5

(s+4.004) (s+9.996)

 Linear (LTI) Models

2-5

Note The state-space representation is best suited for numerical computations. For highest accuracy,
convert to state space prior to combining models and avoid the transfer function and zero/pole/gain
representations, except for model specification and inspection.

Constructing Transfer Function and Zero/Pole/Gain Models

In the DC motor example, the state-space approach produces a set of matrices that represents the
model. If you choose a different approach, you can construct the corresponding models using tf,
zpk, ss, or frd.

sys = tf(num,den) % Transfer function
sys = zpk(z,p,k) % Zero/pole/gain
sys = ss(a,b,c,d) % State-space
sys = frd(response,frequencies) % Frequency response data

For example, you can create the transfer function by specifying the numerator and denominator with
this code.

sys_tf = tf(1.5,[1 14 40.02])

Transfer function:
 1.5

s^2 + 14 s + 40.02

Alternatively, if you want to create the transfer function of the DC motor directly, use these
commands.

s = tf('s');
sys_tf = 1.5/(s^2+14*s+40.02)

These commands result in this transfer function.

Transfer function:
 1.5

s^2 + 14 s + 40.02

To build the zero/pole/gain model, use this command.

sys_zpk = zpk([],[-9.996 -4.004], 1.5)

This command returns the following zero/pole/gain representation.

Zero/pole/gain:
 1.5

(s+9.996) (s+4.004)

Constructing Discrete Time Systems
The Control System Toolbox software provides full support for discrete-time systems. You can create
discrete systems in the same way that you create analog systems; the only difference is that you must
specify a sample time period for any model you build. For example,

sys_disc = tf(1, [1 1], .01);

2 Building Models

2-6

creates a SISO model in the transfer function format.

Transfer function:
 1

z + 1

Sample time: 0.01

Adding Time Delays to Discrete-Time Models

You can add time delays to discrete-time models by specifying an input delay, output delay, or I/O
delay when building the model. The time delay must be a nonnegative integer that represents a
multiple of the sample time. For example,

sys_delay = tf(1, [1 1], 0.01,'ioDelay',5)

returns a system with an I/O delay of 5 s.

Transfer function:
 1
z^(-5) * -----
 z + 1

Sample time: 0.01

Adding Delays to Linear Models
You can add time delays to linear models by specifying an input delay, output delay, or I/O delay when
building a model. For example, to add an I/O delay to the DC motor, use this code.

sys_tfdelay = tf(1.5,[1 14 40.02],'ioDelay',0.05)

This command constructs the DC motor transfer function, but adds a 0.05 second delay.

Transfer function:
 1.5
exp(-0.05*s) * ------------------
 s^2 + 14 s + 40.02

For more information about adding time delays to models, see “Time Delays in Linear Systems”.

LTI Objects
For convenience, the Control System Toolbox software uses custom data structures called LTI objects
to store model-related data. For example, the variable sys_dc created for the DC motor example is
called an SS object. There are also TF, ZPK, and FRD objects for transfer function, zero/pole/gain, and
frequency data response models respectively. The four LTI objects encapsulate the model data and
enable you to manipulate linear systems as single entities rather than as collections of vectors or
matrices.

To see what LTI objects contain, use the get command. This code describes the contents of sys_dc
from the DC motor example.

get(sys_dc)
 A: [2×2 double]

 Linear (LTI) Models

2-7

 B: [2×1 double]
 C: [0 1]
 D: 0
 E: []
 Scaled: 0
 StateName: {2×1 cell}
 StateUnit: {2×1 cell}
 InternalDelay: [0×1 double]
 InputDelay: 0
 OutputDelay: 0
 Ts: 0
 TimeUnit: 'seconds'
 InputName: {''}
 InputUnit: {''}
 InputGroup: [1×1 struct]
 OutputName: {''}
 OutputUnit: {''}
 OutputGroup: [1×1 struct]
 Notes: [0×1 string]
 UserData: []
 Name: ''
 SamplingGrid: [1×1 struct]

You can manipulate the data contained in LTI objects using the set command; see the Control System
Toolbox online reference pages for descriptions of set and get.

Another convenient way to set or retrieve LTI model properties is to access them directly using dot
notation. For example, if you want to access the value of the A matrix, instead of using get, you can
type

sys_dc.A

at the MATLAB® prompt. This notation returns the A matrix.

ans =

 -4.0000 -0.0300
 0.7500 -10.0000

Similarly, if you want to change the values of the A matrix, you can do so directly, as this code shows.

A_new = [-4.5 -0.05; 0.8 -12.0];
sys_dc.A = A_new;

See Also
ss | tf | zpk

Related Examples
• “Transfer Functions”
• “State-Space Models”
• “Discrete-Time Numeric Models”

2 Building Models

2-8

More About
• “Numeric Models”

 Linear (LTI) Models

2-9

MIMO Models

State-Space Model of Jet Transport Aircraft
This example shows how to build a MIMO model of a jet transport. Because the development of a
physical model for a jet aircraft is lengthy, only the state-space equations are presented here. See any
standard text in aviation for a more complete discussion of the physics behind aircraft flight.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558 -0.9968 0.0802 0.0415
 0.5980 -0.1150 -0.0318 0
 -3.0500 0.3880 -0.4650 0
 0 0.0805 1.0000 0];

B = [0.0073 0
 -0.4750 0.0077
 0.1530 0.1430
 0 0];

C = [0 1 0 0
 0 0 0 1];

D = [0 0
 0 0];

Use the following commands to specify this state-space model as an LTI object and attach names to
the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw rate' 'bank angle'};

sys_mimo = ss(A,B,C,D,'statename',states,...
'inputname',inputs,...
'outputname',outputs);

You can display the LTI model by typing sys_mimo.

sys_mimo

a =
 beta yaw roll phi
 beta -0.0558 -0.9968 0.0802 0.0415
 yaw 0.598 -0.115 -0.0318 0
 roll -3.05 0.388 -0.465 0
 phi 0 0.0805 1 0

b =
 rudder aileron
 beta 0.0073 0
 yaw -0.475 0.0077
 roll 0.153 0.143
 phi 0 0

2 Building Models

2-10

c =
 beta yaw roll phi
 yaw rate 0 1 0 0
 bank angle 0 0 0 1

d =
 rudder aileron
 yaw rate 0 0
 bank angle 0 0

Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta (sideslip angle) and phi
(bank angle) and radians/sec for yaw (yaw rate) and roll (roll rate). The rudder and aileron
deflections are in degrees.

As in the SISO case, use tf to derive the transfer function representation.

tf(sys_mimo)

Transfer function from input "rudder" to output...
 -0.475 s^3 - 0.2479 s^2 - 0.1187 s - 0.05633
 yaw rate: ---
 s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

 0.1148 s^2 - 0.2004 s - 1.373
 bank angle: ---
 s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

Transfer function from input "aileron" to output...
 0.0077 s^3 - 0.0005372 s^2 + 0.008688 s + 0.004523
 yaw rate: ---
 s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

 0.1436 s^2 + 0.02737 s + 0.1104
 bank angle: ---
 s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

Constructing MIMO Transfer Functions
MIMO transfer functions are two-dimensional arrays of elementary SISO transfer functions. There
are two ways to specify MIMO transfer function models:

• Concatenation of SISO transfer function models
• Using tf with cell array arguments

Concatenation of SISO Models

Consider the following single-input, two-output transfer function.

H(s) =

s− 1
s + 1
s + 2

s2 + 4s + 5

 MIMO Models

2-11

You can specify H(s) by concatenation of its SISO entries. For instance,

h11 = tf([1 -1],[1 1]);
h21 = tf([1 2],[1 4 5]);

or, equivalently,

s = tf('s')
h11 = (s-1)/(s+1);
h21 = (s+2)/(s^2+4*s+5);

can be concatenated to form H(s).

H = [h11; h21]

This syntax mimics standard matrix concatenation and tends to be easier and more readable for
MIMO systems with many inputs and/or outputs.

Using the tf Function with Cell Arrays

Alternatively, to define MIMO transfer functions using tf, you need two cell arrays (say, N and D) to
represent the sets of numerator and denominator polynomials, respectively. See “What Is a Cell
Array?” for more details on cell arrays.

For example, for the rational transfer matrix H(s), the two cell arrays N and D should contain the row-
vector representations of the polynomial entries of

N(s) = s− 1
s + 2 D(s) = s + 1

s2 + 4s + 5

You can specify this MIMO transfer matrix H(s) by typing

N = {[1 -1];[1 2]}; % Cell array for N(s)
D = {[1 1];[1 4 5]}; % Cell array for D(s)
H = tf(N,D)

These commands return the following result:

Transfer function from input to output...
 s - 1
 #1: -----
 s + 1

 s + 2
 #2: -------------
 s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO transfer matrix H(s),
the cell array entries N{i,j} and D{i,j} should be row-vector representations of the numerator and
denominator of Hij(s), the ijth entry of the transfer matrix H(s).

Accessing I/O Pairs in MIMO Systems
After you define a MIMO system, you can access and manipulate I/O pairs by specifying input and
output pairs of the system. For instance, if sys_mimo is a MIMO system with two inputs and three
outputs,

2 Building Models

2-12

sys_mimo(3,1)

extracts the subsystem, mapping the first input to the third output. Row indices select the outputs
and column indices select the inputs. Similarly,

sys_mimo(3,1) = tf(1,[1 0])

redefines the transfer function between the first input and third output as an integrator.

 MIMO Models

2-13

Arrays of Linear Models
You can specify and manipulate collections of linear models as single entities using LTI arrays. For
example, if you want to vary the Kb and Km parameters for the DC motor and store the resulting state-
space models, use this code.

K = [0.1 0.15 0.2]; % Several values for Km and Kb
A1 = [-R/L -K(1)/L; K(1)/J -Kf/J];
A2 = [-R/L -K(2)/L; K(2)/J -Kf/J];
A3 = [-R/L -K(3)/L; K(3)/J -Kf/J];
sys_lti(:,:,1)= ss(A1,B,C,D);
sys_lti(:,:,2)= ss(A2,B,C,D);
sys_lti(:,:,3)= ss(A3,B,C,D);

The number of inputs and outputs must be the same for all linear models encapsulated by the LTI
array, but the model order (number of states) can vary from model to model within a single LTI array.

The LTI array sys_lti contains the state-space models for each value of K. Type sys_lti to see the
contents of the LTI array.

Model sys_lti(:,:,1,1)
======================

 a =
 x1 x2
 x1 -4 -0.2
 x2 5 -10
.
.
.
Model sys_lti(:,:,2,1)
======================

 a =
 x1 x2
 x1 -4 -0.3
 x2 7.5 -10
.
.
.
Model sys_lti(:,:,3,1)
======================

 a =
 x1 x2
 x1 -4 -0.4
 x2 10 -10
.
.
.
3x1 array of continuous-time state-space models.

You can manipulate the LTI array like any other object. For example,

step(sys_lti)

produces a plot containing step responses for all three state-space models.

2 Building Models

2-14

Step Responses for an LTI Array Containing Three Models

LTI arrays are useful for performing batch analysis on an entire set of models. For more information,
see “Model Arrays”.

 Arrays of Linear Models

2-15

Model Characteristics
You can use the Control System Toolbox commands to query model characteristics such as the I/O
dimensions, poles, zeros, and DC gain. These commands apply to both continuous- and discrete-time
models. Their LTI-based syntax is summarized in the table below.

Commands to Query Model Characteristics

Command Description
size(model_name) Number of inputs and outputs
ndims(model_name) Number of dimensions
isct(model_name) Returns 1 for continuous systems
isdt(model_name) Returns 1 for discrete systems
hasdelay(model_name) True if system has delays
pole(model_name) System poles
zero(model_name) System (transmission) zeros
dcgain(model_name) DC gain
norm(model_name) System norms (H2 and L∞)
covar(model_name,W) Covariance of response to white noise
bandwidth(model_name) Frequency response bandwidth
order(model_name) LTI model order
pzmap(model_name) Compute pole-zero map of LTI models
damp(model_name) Natural frequency and damping of system poles
class(model_name) Create object or return class of object
isa(model_name) Determine whether input is object of given class
isempty(model_name) Determine whether LTI model is empty
isproper(model_name) Determine whether LTI model is proper
issiso(model_name) Determine whether LTI model is single-input/single-output

(SISO)
isstable(model_name) Determine whether system is stable
reshape(model_name) Change shape of LTI array

2 Building Models

2-16

Interconnecting Linear Models
Arithmetic Operations for Interconnecting Models
You can perform arithmetic on LTI models, such as addition, multiplication, or concatenation.
Addition performs a parallel interconnection. For example, typing

tf(1,[1 0]) + tf([1 1],[1 2]) % 1/s + (s+1)/(s+2)

produces this transfer function.

Transfer function:
s^2 + 2 s + 2

 s^2 + 2 s

Multiplication performs a series interconnection. For example, typing

2 * tf(1,[1 0])*tf([1 1],[1 2]) % 2*1/s*(s+1)/(s+2)

produces this cascaded transfer function.

Transfer function:
2 s + 2

s^2 + 2 s

If the operands are models of different types, the resulting model type is determined by precedence
rules; see “Rules That Determine Model Type” for more information.

For more information about model arithmetic functions, see “Catalog of Model Interconnections”.

You can also use the series and parallel functions as substitutes for multiplication and addition,
respectively.

Equivalent Ways to Interconnect Systems
Operator Function Resulting Transfer Function
sys1 + sys2 parallel(sys1,sys2) Systems in parallel
sys1 - sys2 parallel(sys1,-sys2) Systems in parallel
sys1 * sys2 series(sys2,sys1) Cascaded systems

Feedback Interconnections
You can use the feedback and lft functions to derive closed-loop models. For example,

sys_f = feedback(tf(1,[1 0]), tf([1 1],[1 2])

computes the closed-loop transfer function from r to y for the feedback loop shown below. The result
is

Transfer function:
 s + 2

s^2 + 3 s + 1

 Interconnecting Linear Models

2-17

This figure shows the interconnected system in block diagram format.

Feedback Interconnection

You can use the lft function to create more complicated feedback structures. This function
constructs the linear fractional transformation of two systems. See the reference page for more
information.

2 Building Models

2-18

Converting Between Continuous- and Discrete- Time Systems

Available Commands for Continuous/Discrete Conversion
The commands c2d, d2c, and d2d perform continuous to discrete, discrete to continuous, and
discrete to discrete (resampling) conversions, respectively.

sysd = c2d(sysc,Ts) % Discretization w/ sample period Ts
sysc = d2c(sysd) % Equivalent continuous-time model
sysd1= d2d(sysd,Ts) % Resampling at the period Ts

Available Methods for Continuous/Discrete Conversion
Various discretization/interpolation methods are available, including zero-order hold (default), first-
order hold, Tustin approximation with or without prewarping, and matched zero-pole. For example,

sysd = c2d(sysc,Ts,'foh') % Uses first-order hold
sysc = d2c(sysd,'tustin') % Uses Tustin approximation

Digitizing the Discrete DC Motor Model
You can digitize the DC motor plant using the c2d function and selecting an appropriate sample time.
Choosing the right sample time involves many factors, including the performance you want to
achieve, the fastest time constant in your system, and the speed at which you expect your controller
to run. For this example, choose a time constant of 0.01 second. See “SISO Example: The DC Motor”
on page 2-2 for the construction of the SS object sys_dc.

Ts=0.01;
sysd=c2d(sys_dc,Ts)

a =
 x1 x2
 x1 0.96079 -0.00027976
 x2 0.006994 0.90484

b =
 u1
 x1 0.019605
 x2 7.1595e-005

c =
 x1 x2
 y1 0 1

d =
 u1
 y1 0

Sample time: 0.01
Discrete-time model.

 Converting Between Continuous- and Discrete- Time Systems

2-19

To see the discrete-time zero-pole gain for the digital DC motor, use zpk to convert the model.

fd=zpk(sysd)

Zero/pole/gain:
7.1595e-005 (z+0.9544)

 (z-0.9608) (z-0.9049)

Sample time: 0.01

You can compare the step responses of sys_dc and sysd by typing

step(sys_dc,sysd)

This figure shows the result.

Note the step response match. Continuous and FOH-discretized step responses match for models
without internal delays.

2 Building Models

2-20

Reducing Model Order

Model Order Reduction Commands
You can derive reduced-order SISO and MIMO models with the commands shown in the following
table.

Model Order Reduction
Commands

hsvd Compute Hankel singular values of LTI model
balred Reduced-order model approximation
minreal Minimal realization (pole/zero cancellation)
balreal Compute input/output balanced realization
modred State deletion in I/O balanced realization
sminreal Structurally minimal realization

Techniques for Reducing Model Order
To reduce the order of a model, you can perform any of the following actions:

• Eliminate states that are structurally disconnected from the inputs or outputs using sminreal.

Eliminating structurally disconnected states is a good first step in model reduction because the
process is cheap and does not involve any numerical computation.

• Compute a low-order approximation of your model using balred.
• Eliminate cancelling pole/zero pairs using minreal.

Example: Gasifier Model
This example presents a model of a gasifier, a device that converts solid materials into gases. The
original model is nonlinear.

Loading the Model

To load a linearized version of the model, type

load ltiexamples

at the MATLAB prompt; the gasifier example is stored in the variable named gasf. If you type

size(gasf)

you get in return

State-space model with 4 outputs, 6 inputs, and 25 states.

 Reducing Model Order

2-21

SISO Model Order Reduction

You can reduce the order of a single I/O pair to understand how the model reduction tools work
before attempting to reduce the full MIMO model as described in “MIMO Model Order Reduction” on
page 2-25.

This example focuses on a single input/output pair of the gasifier, input 5 to output 3.

sys35 = gasf(3,5);

Before attempting model order reduction, inspect the pole and zero locations by typing

pzmap(sys35)

Zoom in near the origin on the resulting plot using the zoom feature or by typing

axis([-0.2 0.05 -0.2 0.2])

The following figure shows the results.

Pole-Zero Map of the Gasifier Model (Zoomed In)

Because the model displays near pole-zero cancellations, it is a good candidate for model reduction.

To find a low-order reduction of this SISO model, perform the following steps:

1 Select an appropriate order for your reduced system by examining the relative amount of energy
per state using a Hankel singular value (HSV) plot. Type the command

hsvd(sys35)

to create the HSV plot.

Changing to log scale using the right-click menu results in the following plot.

2 Building Models

2-22

Small Hankel singular values indicate that the associated states contribute little to the I/O
behavior. This plot shows that discarding the last 10 states (associated with the 10 smallest
Hankel singular values) has little impact on the approximation error.

2 To remove the last 10 states and create a 15th order approximation, type

rsys35 = balred(sys35,15);

You can type size(rsys35) to see that your reduced system contains only 15 states.
3 Compare the Bode response of the full-order and reduced-order models using the bode

command:

bode(sys35,'b',rsys35,'r--')

This figure shows the result.

 Reducing Model Order

2-23

As the overlap of the curves in the figure shows, the reduced model provides a good
approximation of the original system.

You can try reducing the model order further by repeating this process and removing more states.
Reduce the gasf model to 5th, 10th, and 15th orders all at once by typing the following command

rsys35 = balred(sys35,[5 10 15]);

Plot a bode diagram of these three reduced systems along with the full order system by typing

bode(sys35,'b',rsys35,'r--')

2 Building Models

2-24

Observe how the error increases as the order decreases.

MIMO Model Order Reduction

You can approximate MIMO models using the same steps as SISO models as follows:

1 Select an appropriate order for your reduced system by examining the relative amount of energy
per state using a Hankel singular value (HSV) plot.

Type

hsvd(gasf)

to create the HSV plot.

Discarding the last 8 states (associated with the 8 smallest Hankel singular values) should have
little impact on the error in the resulting 17th order system.

2 To remove the last 8 states and create a 17th order MIMO system, type

rsys=balred(gasf,17);

You can type size(gasf) to see that your reduced system contains only 17 states.
3 To facilitate visual inspection of the approximation error, use a singular value plot rather than a

MIMO Bode plot. Type

sigma(gasf,'b',gasf-rsys,'r')

to create a singular value plot comparing the original system to the reduction error.

 Reducing Model Order

2-25

The reduction error is small compared to the original system so the reduced order model
provides a good approximation of the original model.

Acknowledgment

MathWorks thanks ALSTOM® Power UK for permitting use of their gasifier model for this example.
This model was issued as part of the ALSTOM Benchmark Challenge on Gasifier Control. For more
details see Dixon, R., (1999), "Advanced Gasifier Control," Computing & Control Engineering Journal,
IEE, Vol. 10, No. 3, pp. 92–96.

2 Building Models

2-26

Analyzing Models

• “Linear Analysis Using the Linear System Analyzer” on page 3-2
• “Simulate Models with Arbitrary Inputs and Initial Conditions” on page 3-6

3

Linear Analysis Using the Linear System Analyzer
In this example, you learn how to analyze the time-domain and frequency-domain responses of one or
more linear models using the Linear System Analyzer app.

Before you can perform the analysis, you must have already created linear models in the MATLAB
workspace. For information on how to create a model, see “Basic Models”.

To perform linear analysis:

1 Open the Linear System Analyzer showing one or more models using the following syntax:

linearSystemAnalyzer(sys1,sys2,...,sysN)

By default, this syntax opens a step response plot of your models, as shown in the following
figure.

Note Alternatively, open Linear System Analyzer from the Apps tab in the MATLAB desktop.
When you do so, select File > Import to load linear models from the MATLAB workspace or a
MAT file.

2 Add more plots to the Linear System Analyzer.

a Select Edit > Plot Configurations.

3 Analyzing Models

3-2

b In the Plot Configurations dialog box, select the number of plots to open.

3 To view a different type of response on a plot, right-click and select a plot type.

 Linear Analysis Using the Linear System Analyzer

3-3

4 Analyze system performance. For example, you can analyze the peak response in the Bode plot
and settling time in the step response plot.

a Right-click to select performance characteristics.
b Click on the dot that appears to view the characteristic value.

3 Analyzing Models

3-4

See Also
Linear System Analyzer | lsim

Related Examples
• “Joint Time-Domain and Frequency-Domain Analysis”

More About
• “Linear System Analyzer Overview”

 Linear Analysis Using the Linear System Analyzer

3-5

Simulate Models with Arbitrary Inputs and Initial Conditions

What is the Linear Simulation Tool?
You can use the Linear Simulation Tool to simulate linear models with arbitrary input signals and
initial conditions.

The Linear Simulation Tool lets you do the following:

• Import input signals from the MATLAB workspace.
• Import input signals from a MAT-file, Microsoft® Excel® spreadsheet, ASCII flat-file, comma-

separated variable file (CSV), or text file.
• Generate arbitrary input signals in the form of a sine wave, square wave, step function, or white

noise.
• Specify initial states for state-space models.

Default initial states are zero.

Opening the Linear Simulation Tool
To open the Linear Simulation Tool, do one of the following:

• In the Linear System Analyzer, right-click the plot area and select Plot Types > Linear
Simulation.

• Use the lsim function at the MATLAB prompt:

lsim(modelname)
• In the MATLAB Figure window, right-click a response plot and select Input data.

Working with the Linear Simulation Tool
The Linear Simulation Tool contains two tabs, Input signals and Initial states.

After opening the Linear Simulation Tool (as described in “Opening the Linear Simulation Tool” on
page 3-6), follow these steps to simulate your model:

1 Click the Input signals tab, if it is not displayed.

3 Analyzing Models

3-6

2 In the Timing area, specify the simulation time vector by doing one of the following:

• Import the time vector by clicking Import time.
• Enter the end time and the time interval in seconds. The start time is set to 0 seconds.

3 Specify the input signal by doing one of the following:

• Click Import signal to import it from the MATLAB workspace or a file. For more information,
see “Importing Input Signals” on page 3-8.

• Click Design signal to create your own inputs. For more information, see “Designing Input
Signals” on page 3-13.

4 If you have a state-space model and want to specify initial conditions, click the Initial states tab.
By default, all initial states are set to zero.

You can either enter state values in the Initial value column, or import values by clicking
Import state vector. For more information about entering initial states, see “Specifying Initial
Conditions” on page 3-15.

 Simulate Models with Arbitrary Inputs and Initial Conditions

3-7

5 For a continuous model, select one of the following interpolation methods in the Interpolation
method list to be used by the simulation solver:

• Zero order hold
• First order hold (linear interpolation)
• Automatic (Linear Simulation Tool selects first order hold or zero order hold automatically,

based on the smoothness of the input)

Note The interpolation method is not used when simulating discrete models.
6 Click Simulate.

Importing Input Signals
You can import input signals from the MATLAB workspace after opening the Linear Simulation Tool
(see “Opening the Linear Simulation Tool” on page 3-6). You can also import inputs from a MAT-file,
Microsoft Excel spreadsheet, ASCII flat-file, comma-separated variable file (CSV), or text file.

For information about creating your own inputs, see “Designing Input Signals” on page 3-13. For an
overview of working with the Linear Simulation Tool, see “Working with the Linear Simulation Tool”
on page 3-6.

To import one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab, if it is not displayed.
2 Specify the simulation time in the Timing area.
3 Select one or more rows for the input channels you want to import. The following figure shows an

example with two selected channels.

3 Analyzing Models

3-8

4 Click Import signal to open the Data Import dialog box. The following figure shows an example
of the Data Import dialog box.

5 In the Import from list, select the source of the input signals. It can be one of the following:

• Workspace
• MAT file
• XLS file
• CSV file
• ASCII file

6 Select the data you want to import. The Data Import dialog box contains different options
depending on which source format you selected.

7 Click Import.

For an example of importing input signals, see the following:

 Simulate Models with Arbitrary Inputs and Initial Conditions

3-9

• “Example: Loading Inputs from a Microsoft Excel Spreadsheet” on page 3-10
• “Example: Importing Inputs from the Workspace” on page 3-10

Example: Loading Inputs from a Microsoft Excel Spreadsheet
To load inputs from a Microsoft Excel (XLS) spreadsheet:

1 In the Linear Simulation Tool, click Import signal in the Input signals tab to open the Data
Import dialog box.

2 Select XLS file in the Import from list.
3 Click Browse.
4 Select the file you want to import and click Open. This populates the Data Import dialog box with

the data from the Microsoft Excel spreadsheet.

Example: Importing Inputs from the Workspace
To load an input signal from the MATLAB workspace:

1 Enter this code to open a response plot with a second-order system:

s=tf('s');
ss=(s+2)/(s^2+3*s+2);
lsim(ss,randn(100,1),1:100);

2 Right-click the plot background and select Input data.

3 Analyzing Models

3-10

This opens the Linear Simulation Tool with default input data.

3 Create an input signal for your system in the MATLAB Command Window, such as the following:

new_signal=[-3*ones(1,20) 2*ones(1,30) 0.5*ones(1,50)]';

4 In the Linear Simulation Tool, click Import signal.
5 In the Data Import dialog box, click, Assign columns to assign the first column of the input

signal to the selected channel.

 Simulate Models with Arbitrary Inputs and Initial Conditions

3-11

6 Click Import. This imports the new signal into the Linear Simulation Tool.

7 Click Simulate to see the response of your second-order system to the imported signal.

3 Analyzing Models

3-12

Designing Input Signals
You can generate arbitrary input signals in the form of a sine wave, square wave, step function, or
white noise after opening the Linear Simulation Tool (see “Opening the Linear Simulation Tool” on
page 3-6).

For information about importing inputs from the MATLAB workspace or from a file, see “Importing
Input Signals” on page 3-8. For an overview of working with the Linear Simulation Tool, see “Working
with the Linear Simulation Tool” on page 3-6.

To design one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab (if it is not displayed).
2 Specify the simulation time in the Timing area. The time interval (in seconds) is used to evaluate

the input signal you design in later steps of this procedure.
3 Select one or more rows for the signal channels you want to design. The following figure shows

an example with two selected channels.

 Simulate Models with Arbitrary Inputs and Initial Conditions

3-13

4 Click Design signal to open the Signal Designer dialog box. The following figure shows an
example of the Signal Designer dialog box.

5 In the Signal type list, select the type of signal you want to create. It can be one of the
following:

• Sine wave
• Square wave
• Step function
• White noise

6 Specify the signal characteristics. The Signal Designer dialog box contains different options
depending on which signal type you selected.

7 Click Insert. This brings the new signal into the Linear Simulation Tool.
8 Click Simulate in the Linear Simulation Tool to view the system response.

3 Analyzing Models

3-14

Specifying Initial Conditions
If your system is in state-space form, you can enter or import initial states after opening the Linear
Simulation Tool (see “Opening the Linear Simulation Tool” on page 3-6).

For an overview of working with the Linear Simulation Tool, see “Working with the Linear Simulation
Tool” on page 3-6.

You can also import initial states from the MATLAB workspace.

To import one or more initial states:

1 In the Linear Simulation Tool, click the Initial states tab (if it is not already displayed).
2 In the Selected system list, select the system for which you want to specify initial conditions.
3 You can either enter state values in the Initial value column, or import values from the MATLAB

workspace by clicking Import state vector. The following figure shows an example of the import
window:

Note For n-states, your initial-condition vector must have n entries.
4 After specifying the initial states, click Simulate in the Linear Simulation Tool to view the system

response.

See Also
Linear System Analyzer | lsim

Related Examples
• “Joint Time-Domain and Frequency-Domain Analysis”
• “Response from Initial Conditions”

 Simulate Models with Arbitrary Inputs and Initial Conditions

3-15

Designing Compensators

• “Choosing a PID Controller Design Tool” on page 4-2
• “Designing PID Controllers with PID Tuner” on page 4-4
• “Analyze Design in PID Tuner” on page 4-9
• “PID Controller Design for Fast Reference Tracking” on page 4-16
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)”

on page 4-23
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)”

on page 4-32
• “Interactively Estimate Plant Parameters from Response Data” on page 4-37
• “Preprocess Data” on page 4-46
• “PID Tuning Algorithm” on page 4-49
• “System Identification for PID Control” on page 4-50
• “Input/Output Data for Identification” on page 4-53
• “Choosing Identified Plant Structure” on page 4-54
• “Pole Placement” on page 4-62
• “Linear-Quadratic-Gaussian (LQG) Design” on page 4-65
• “Design an LQG Regulator” on page 4-72
• “Design an LQG Servo Controller” on page 4-75
• “Design an LQR Servo Controller in Simulink” on page 4-78
• “State Estimation Using Time-Varying Kalman Filter” on page 4-82

4

Choosing a PID Controller Design Tool
Control System Toolbox software provides several tools for designing PID controllers for plants
represented by LTI models.

The following table summarizes these tools and when to use them. For information about tuning PID
controllers in Simulink® models, see “Model-Based PID Controller Tuning” (Simulink Control Design).

Tool When to Use Get Started
PID Tuner app • Automatic, interactive tuning

of SISO PID controller in the
feed-forward path of single-
loop, unity-feedback control
configuration.

• Automatic, interactive tuning
of 2-DOF PID controller in
the loop configuration of this
illustration:

• Interactive fitting of a plant
model from measured SISO
response data and automatic
tuning of PID controller for
the resulting model (requires
System Identification
Toolbox™ software).

“Tune PID Controller to Favor
Reference Tracking or
Disturbance Rejection (PID
Tuner)” on page 4-23

Command-line PID tuning using
pidtune

• Programmatic tuning of 1-
DOF and 2-DOF PID
controllers in the single-loop
configuration.

• Designing controllers for
multiple models
simultaneously.

“Tune PID Controller to Favor
Reference Tracking or
Disturbance Rejection
(Command Line)” on page 4-32

4 Designing Compensators

4-2

Tool When to Use Get Started
Tune PID Controller Live
Editor task

Interactive tuning of 1-DOF and
2-DOF PID controllers and
automatic code generation in a
live script.

“PID Controller Design in the
Live Editor”

Control System Designer app Tuning PID controllers in any
other loop configuration, such
as cascades and other multiloop
configurations

“Getting Started with the
Control System Designer”

See Also
Apps
Control System Designer | PID Tuner

Functions
pidtune

Live Editor Tasks
Tune PID Controller

More About
• “Choosing a Control Design Approach”
• “Feedback Control Architectures”

 Choosing a PID Controller Design Tool

4-3

Designing PID Controllers with PID Tuner
In Control System Toolbox, PID Tuner lets you perform automatic, interactive tuning of PID
controllers for plants represented by LTI models.

For information about using PID Tuner to tune a PID Controller block in a Simulink model, see
“Introduction to Model-Based PID Tuning in Simulink” (Simulink Control Design).

PID Tuner Overview
Use PID Tuner to interactively design a SISO PID controller in the feed-forward path of single-loop,
unity-feedback control configuration.

PID Tuner automatically designs a controller for your plant. You specify the controller type (P, I, PI,
PD, PDF, PID, PIDF) and form (parallel or standard).

You can also use PID Tuner to design a 2-DOF PID controller for the feedback configuration of this
illustration:

PID Tuner can design 2-DOF PID controllers in which the setpoint weights can be free and tunable
parameters. PID Tuner can also design controllers in which the setpoint weights are fixed in
common control configurations, such as I-PD and PI-D.

You can analyze the design using a variety of response plots, and interactively adjust the design to
meet your performance requirements.

To launch PID Tuner, use the pidTuner command:

pidTuner(sys,type)

where sys is a linear model of the plant you want to control, and type is indicates the controller type
on page 4-5 to design.

Alternatively, enter

pidTuner(sys,Cbase)

where Cbase is a baseline controller, allowing you to compare the performance of the designed
controller to the performance of Cbase.

4 Designing Compensators

4-4

For more information about sys and Cbase, see the pidTuner reference page.

Note You can also open PID Tuner from the MATLAB desktop, in the Apps tab. When you do so, use
the Plant menu in PID Tuner to specify your plant model.

PID Controller Type
To select the controller type, use one of these methods:

• Specify type when opening the app — Provide the type argument to the pidTuner command
when you open PID Tuner. For example, pidTuner(G,'PIDF2') opens PID Tuner with an
initial design that is a 2-DOF PID controller with a filter on the derivative term.

• Specify type with an existing controller object — Provide the baseline-controller Cbase
argument to the pidTuner command when you open PID Tuner. PID Tuner designs a controller
of the same type as Cbase. For example, suppose C0 is a pid controller object that has
proportional and derivative action only (PD controller). Then, pidTuner(G,C0) opens PID Tuner
with an initial design that is a PD controller.

• Specify controller type within the app — In PID Tuner, use the Type menu to change
controller types.

 Designing PID Controllers with PID Tuner

4-5

The following tables summarize the available PID controller types. For more information about these
controller types, see “PID Controller Types for Tuning”.

1-DOF Controllers

type input to
pidTuner

Entry in Type menu Controller Actions

'P' P Proportional only
'I' I Integral only
'PI' PI Proportional and integral
'PD' PD Proportional and derivative
'PDF' PDF Proportional and derivative with first-order filter on derivative

term
'PID' PID Proportional, integral, and derivative

4 Designing Compensators

4-6

type input to
pidTuner

Entry in Type menu Controller Actions

'PIDF' PIDF Proportional, integral, and derivative with first-order filter on
derivative term

2-DOF Controllers

PID Tuner can automatically design 2-DOF PID controller types with free setpoint weights. The
following table summarizes the 2-DOF controller types in PID Tuner. For more information about 2-
DOF PID controllers generally, see “Two-Degree-of-Freedom PID Controllers”.

type input to
pidTuner

Entry in Type
menu

Controller Actions

'PI2' PI2 2-DOF proportional and integral
'PD2' PD2 2-DOF proportional and derivative
'PDF2' PDF2 2-DOF proportional and derivative with first-order filter

on derivative term
'PID2' PID2 2-DOF proportional, integral, and derivative
'PIDF2' PIDF2 2-DOF proportional, integral, and derivative with first-

order filter on derivative term

2-DOF Controllers with Fixed Setpoint Weights

Use PID Tuner to design the fixed-setpoint-weight controller types summarized in the following
table. For more information about these controller types, see “PID Controller Types for Tuning”.

type input to pidTuner Entry in Type menu Controller Actions
'I-PD' I-PD 2-DOF PID with b = 0, c = 0
'I-PDF' I-PDF 2-DOF PIDF with b = 0, c = 0
'ID-P' ID-P 2-DOF PID with b = 0, c = 1
'IDF-P' IDF-P 2-DOF PIDF with b = 0, c = 1
'PI-D' PI-D 2-DOF PID with b = 1, c = 0
'PI-DF' PI-DF 2-DOF PIDF with b = 1, c = 0

Discrete-Time Controller Types

If sys is a discrete-time model with sample time Ts, PID Tuner designs a discrete-time pid
controller using the ForwardEuler discrete integrator formula. To design a controller that has
different discrete integrator formulas, use one of the following methods:

• Provide a discrete-time baseline controller Cbase to the launch command pidTuner. PID Tuner
designs a controller that has the same discrete integrator formulas as Cbase.

• After launching PID Tuner, click Options to open the Controller Options dialog box. Select
discrete integrator formulas from the Integral Formula and Derivative Formula menus.

For more information about discrete integrator formulas, see the pid, pid2, pidstd, and pidstd2
reference pages.

 Designing PID Controllers with PID Tuner

4-7

PID Controller Form
When you use the type input to pidTuner, PID Tuner designs a controller in parallel form. To
design a controller in standard form, use one of the following methods:

• Provide a standard-form baseline controller Cbase to the launch command pidTuner. PID Tuner
designs a controller of the same form as Cbase.

• Use the Form menu to change controller form after launching PID Tuner.

For more information about parallel and standard controller forms, see the pid, pid2, pidstd, and
pidstd2 reference pages.

See Also

More About
• “Proportional-Integral-Derivative (PID) Controllers”
• “Two-Degree-of-Freedom PID Controllers”
• “Analyze Design in PID Tuner” on page 4-9
• “PID Controller Design for Fast Reference Tracking” on page 4-16

4 Designing Compensators

4-8

Analyze Design in PID Tuner
In Control System Toolbox, PID Tuner provides system response plots and other tools for tuning PID
controllers for plants represented by LTI models.

For information about analysis in PID Tuner with Simulink models, see “Analyze Design in PID
Tuner” (Simulink Control Design).

Plot System Responses
To determine whether the compensator design meets your requirements, you can analyze the system
response using the response plots. On the PID Tuner tab, select a response plot from the Add Plot
menu. The Add Plot menu also lets you choose from several step plots (time-domain response) or
Bode plots (frequency-domain response).

For 1-DOF PID controller types such as PI, PIDF, and PDF, the software computes system responses
based upon the following single-loop control architecture, where G is your specified plant and C is the
PID controller:

 Analyze Design in PID Tuner

4-9

For 2-DOF PID controller types such as PI2, PIDF2, and I-PD, the software computes responses based
upon the following architecture:

The system responses are based on the decomposition of the 2-DOF PID controller, C, into a setpoint
component Cr and a feedback component Cy, as described in “Two-Degree-of-Freedom PID
Controllers”.

The following table summarizes the available responses for analysis plots. (For frequency-response-
data plants such as frd models, time-domain response plots are not available.)

Response Plotted System (1-DOF) Plotted System (2-DOF) Description
Plant G G Plant response. Use to

examine plant dynamics.
Open-loop GC –GCy Response of the open-loop

controller-plant system.
Use for frequency-domain
design.
Use when your design
specifications include
robustness criteria such as
open-loop gain margin and
phase margin.

4 Designing Compensators

4-10

Response Plotted System (1-DOF) Plotted System (2-DOF) Description
Reference tracking GC

1 + GC (from r to y) GCr
1− GCy

 (from r to y)
Closed-loop system
response to a step change
in setpoint. Use when your
design specifications
include setpoint tracking.

Controller effort C
1 + GC (from r to u) Cr

1− GCy
 (from r to u)

Closed-loop controller
output response to a step
change in setpoint. Use
when your design is
limited by practical
constraints, such as
controller saturation.

Input disturbance
rejection

G
1 + GC (from d1 to y) G

1− GCy
 (from d1 to y) Closed-loop system

response to load
disturbance (a step
disturbance at the plant
input). Use when your
design specifications
include input disturbance
rejection.

Output disturbance
rejection

1
1 + GC (from d2 to y) 1

1− GCy
 (from d2 to y) Closed-loop system

response to a step
disturbance at plant
output. Use when you
want to analyze sensitivity
to modeling errors.

Compare Tuned Response to Baseline Response

If you have defined a baseline controller, then by default PID Tuner displays both the responses
using the current PID Tuner design and the responses using the baseline controller.

 Analyze Design in PID Tuner

4-11

There are two ways to define a baseline controller:

• Load a baseline controller when you open PID Tuner, using the syntax pidTuner(sys,C0).
• Make the current PID Tuner design the baseline controller at any time, by clicking the Export

arrow and selecting Save as Baseline.

4 Designing Compensators

4-12

When you do so, the current Tuned response becomes the Baseline response. Further adjustment
of the current design creates a new Tuned response line.

To hide the Baseline response, click Options, and uncheck Show Baseline Controller Data.

View Numeric Values of System Characteristics
You can view the values for system characteristics, such as peak response and gain margin, either:

• Directly on the response plot — Use the right-click menu to add characteristics, which appear as
blue markers. Then, left-click the marker to display the corresponding data panel.

• In the Performance and robustness table — To display this table, click Show Parameters.

 Analyze Design in PID Tuner

4-13

Refine the Design
If the response of the initial controller design does not meet your requirements, you can interactively
adjust the design. PID Tuner gives you two Domain options for refining the controller design:

• Time domain (default) — Use the Response Time slider to make the closed-loop response of the
control system faster or slower. Use the Transient Behavior slider to make the controller more
aggressive at disturbance rejection or more robust against plant uncertainty.

• Frequency — Use the Bandwidth slider to make the closed-loop response of the control system
faster or slower (the response time is 2/wc, where wc is the bandwidth). Use the Phase Margin
slider to make the controller more aggressive at disturbance rejection or more robust against
plant uncertainty.

In both modes, there is a trade-off between reference tracking and disturbance rejection
performance. For an example that shows how to use the sliders to adjust this trade-off, see “Tune PID
Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)” on page 4-23.

Tip To revert to the initial controller design after moving the sliders, click Reset Design.

4 Designing Compensators

4-14

See Also

Related Examples
• “PID Controller Design for Fast Reference Tracking” on page 4-16

 Analyze Design in PID Tuner

4-15

PID Controller Design for Fast Reference Tracking
This example shows how to use PID Tuner to design a controller for the plant:

sys = 1
(s + 1)3

.

The design requirements are for the closed loop system to track a reference input with a rise time
less than 1.5 s, and settling time less than 6 s.

In this example, you represent the plant as an LTI model. For information about using PID Tuner to
tune a PID Controller block in a Simulink model, see “Tune PID Controller to Favor Reference
Tracking or Disturbance Rejection” (Simulink Control Design).

1 Create the plant model and open PID Tuner to design a PI controller for a first pass design.

sys = zpk([],[-1 -1 -1],1);
pidTuner(sys,'pi')

When you open PID Tuner, it automatically designs a controller of the type you specify (here,
PI). The controller is designed for a balance between performance (response time) and
robustness (stability margins). PID Tuner displays the closed-loop step response of the system
with the designed controller.

4 Designing Compensators

4-16

Tip You can also open PID Tuner from the MATLAB desktop, in the Apps tab. When you do so,
use the Plant menu in PID Tuner to specify your plant model.

2 Examine the reference tracking rise time and settling time.

Right-click on the plot and select Characteristics > Rise Time to mark the rise time as a
blue dot on the plot. Select Characteristics > Settling Time to mark the settling time. To
see tool-tips with numerical values, click each of the blue dots.

The initial PI controller design provides a rise time of 2.35 s and settling time of 10.7 s. Both
results are slower than the design requirements.

Note To display the performance metrics in a table instead of in tool-tips on the plot, click Show
parameters. This action opens a display containing performance and robustness metrics and the
tuned controller gains.

3 Slide the Response time slider to the right to try to improve the loop performance. The
response plot automatically updates with the new design.

 PID Controller Design for Fast Reference Tracking

4-17

Moving the Response time slider far enough to meet the rise time requirement of less than 1.5 s
results in more oscillation. Additionally, the parameters display shows that the new response has
an unacceptably long settling time.

To achieve the faster response speed, the algorithm must sacrifice stability.
4 Change the controller type to improve the response.

Adding derivative action to the controller gives PID Tuner more freedom to achieve adequate
phase margin with the desired response speed.

In the Type menu, select PIDF. PID Tuner designs a new PIDF controller. (See “PID Controller
Type” on page 4-5 for more information about available controller types.)

4 Designing Compensators

4-18

The rise time and settling time now meet the design requirements. You can use the Response
time slider to make further adjustments to the response. To revert to the default automated
tuning result, click Reset Design.

Note To adjust the closed-loop bandwidth instead of the response time, select Frequency
domain from the Design mode menu . The bandwidth is inversely proportional to the response
time.

5 Analyze other system responses, if appropriate.

To analyze other system responses, click Add Plot. Select the system response you want to
analyze.

 PID Controller Design for Fast Reference Tracking

4-19

For example, to observe the closed-loop step response to disturbance at the plant input, in the
Step section of the Add Plot menu, select Input disturbance rejection. The disturbance
rejection response appears in a new figure.

4 Designing Compensators

4-20

See “Analyze Design in PID Tuner” on page 4-9 for more information about available response
plots.

Tip Use the options in the View tab to change how PID Tuner displays multiple plots.
6 Export your controller design to the MATLAB workspace.

To export your final controller design to the MATLAB workspace, click Export. PID Tuner
exports the controller as a

• pid controller object, if the Form is Parallel
• pidstd controller object, if the Form is Standard

Alternatively, you can export a model using the right-click menu in the Data Browser. To do so,
click the Data Browser tab.

Then, right-click the model and select Export.

 PID Controller Design for Fast Reference Tracking

4-21

See Also

More About
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)” on

page 4-23
• “Analyze Design in PID Tuner” on page 4-9

4 Designing Compensators

4-22

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection (PID Tuner)

This example shows how to tune a PID controller to reduce overshoot in reference tracking or to
improve rejection of a disturbance at the plant input. Using the PID Tuner app, the example
illustrates the tradeoff between reference tracking and disturbance-rejection performance in PI and
PID control systems.

In this example, you represent the plant as an LTI model. For information about using PID Tuner to
tune a PID Controller block in a Simulink model, see “Tune PID Controller to Favor Reference
Tracking or Disturbance Rejection” (Simulink Control Design).

Consider the control system of the following illustration.

The plant in this example is:

Plant = 0.3
s2 + 0.1s

.

Reference tracking is the response at y to signals at r. Disturbance rejection is a measure of the
suppression at y of signals at d. When you use PID Tuner to tune the controller, you can adjust the
design to favor reference tracking or disturbance rejection as your application requires.

Design Initial PI Controller

Having an initial controller design provides a baseline against which you can compare results as you
tune a PI controller. Create an initial PI controller design for the plant using PID tuning command
pidtune.

G = tf(0.3,[1,0.1,0]); % plant model
C = pidtune(G,'PI');

Use the initial controller design to open PID Tuner.

pidTuner(G,C)

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-23

Add a step response plot of the input disturbance rejection. Select Add Plot > Input Disturbance
Rejection.

4 Designing Compensators

4-24

PID Tuner tiles the disturbance-rejection plot side by side with the reference-tracking plot.

Tip Use the options in the View tab to change how PID Tuner displays multiple plots.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-25

By default, for a given bandwidth and phase margin, PID Tuner tunes the controller to achieve a
balance between reference tracking and disturbance rejection. In this case, the controller yields some
overshoot in the reference-tracking response. The controller also suppresses the input disturbance
with a longer settling time than the reference tracking, after an initial peak.

Adjust Transient Behavior

Depending on your application, you might want to alter the balance between reference tracking and
disturbance rejection to favor one or the other. For a PI controller, you can alter this balance using
the Transient Behavior slider. Move the slider to the left to improve the disturbance rejection. The
responses with the initial controller design are now displayed as the Baseline response (dotted
line).

Lowering the transient-behavior coefficient to 0.45 speeds up disturbance rejection, but also
increases overshoot in the reference-tracking response.

Tip Right-click on the reference-tracking plot and select Characteristics > Peak Response to
obtain a numerical value for the overshoot.

Move the Transient behavior slider to the right until the overshoot in the reference-tracking
response is minimized.

4 Designing Compensators

4-26

Increasing the transient-behavior coefficient to 0.70 nearly eliminates the overshoot, but results in
extremely sluggish disturbance rejection. You can try moving the Transient behavior slider until you
find a balance between reference tracking and disturbance rejection that is suitable for your
application. The effect that changing the slider has on the balance depends on the plant model. For
some plant models, the effect is not as large as shown in this example.

Change PID Tuning Design Focus

So far, the response time of the control system has remained fixed while you have changed the
transient-behavior coefficient. These operations are equivalent to fixing the bandwidth and varying
the target minimum phase margin of the system. If you want to fix both the bandwidth and target
phase margin, you can still change the balance between reference tracking and disturbance rejection.
To tune a controller that favors either disturbance rejection or reference tracking, you change the
design focus of the PID tuning algorithm.

Changing the PID Tuner design focus is more effective the more tunable parameters there are in the
control system. Therefore, it does not have much effect when used with a PI controller. To see its
effect, change the controller type to PIDF. In the Type menu, select PIDF.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-27

PID Tuner automatically designs a controller of the new type, PIDF. Move the Transient Behavior
slider to set the coefficient back to 0.6.

Save this new design as the baseline design, by clicking the Export arrow and selecting Save as
Baseline.

The PIDF design replaces the original PI design as the baseline plot.

As in the PI case, the initial PIDF design balances reference tracking and disturbance rejection. Also
as in the PI case, the controller yields some overshoot in the reference-tracking response, and
suppresses the input disturbance with a similar settling time.

4 Designing Compensators

4-28

Change the PID Tuner design focus to favor reference tracking without changing the response time

or the transient-behavior coefficient. To do so, click Options, and in the Focus menu, select
Reference tracking.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-29

PID Tuner automatically retunes the controller coefficients with a focus on reference-tracking
performance.

The PIDF controller tuned with reference-tracking focus is displayed as Tuned response (solid
line). The plots show that the resulting controller tracks the reference input with considerably less
overshoot and a faster settling time than the balanced controller design. However, the design yields
much poorer disturbance rejection.

4 Designing Compensators

4-30

Change the design focus to favor disturbance rejection. In the Options dialog box, in the Focus
menu, select Input disturbance rejection.

This controller design yields improved disturbance rejection, but results in some increased overshoot
in the reference-tracking response.

When you use design focus option, you can still adjust the Transient Behavior slider for further fine-
tuning of the balance between the two measures of performance. Use the design focus and the sliders
together to achieve the performance balance that best meets your design requirements. The effect of
this fine tuning on system performance depends strongly on the properties of your plant. For some
plants, moving the Transient Behavior slider or changing the Focus option has little or no effect.

See Also

More About
• “PID Tuning Algorithm” on page 4-49
• “PID Controller Design for Fast Reference Tracking” on page 4-16
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)”

on page 4-32

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-31

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection (Command Line)

This example shows how to use command-line PID tuning options to reduce overshoot in reference
tracking or to improve rejection of a disturbance at the plant input. Using the pidtune command,
the example illustrates the tradeoff between reference tracking and disturbance-rejection
performance in PI and PID control systems.

Consider the control system of the following illustration.

Setpoint tracking is the response at y to signals at r. Input disturbance rejection is the suppression at
y of signals at d.

Create a model of the plant, which for this example is given by:

G = tf(0.3,[1 0.1 0]);

Design a PI controller for this plant, using a bandwidth of 0.03 rad/s.

wc = 0.03;
[C1,info] = pidtune(G,'PI',wc);

Examine the step-reference tracking and step-disturbance rejection of the control system using the
default controller. The disturbance response from d to y is equivalent to the response of a closed loop
given by feedback(G,C1).

T1 = feedback(G*C1,1);
GS1 = feedback(G,C1);

subplot(2,1,1);
stepplot(T1)
title('Reference Tracking')
subplot(2,1,2);
stepplot(GS1)
title('Disturbance Rejection')

4 Designing Compensators

4-32

By default, for a given bandwidth, pidtune tunes the controller to achieve a balance between
reference tracking and disturbance rejection. In this case, the controller yields some overshoot in the
reference-tracking response. The controller also suppresses the input disturbance with a somewhat
longer settling time than the reference tracking, after an initial peak.

Depending on your application, you might want to alter the balance between reference tracking and
disturbance rejection to favor one or the other. For a PI controller, you can alter this balance by
changing the phase margin of the tuned system. The default controller returned by pidtune yields a
phase margin of 60°.

info.PhaseMargin

ans =

 60.0000

Design controllers for phase margins of 45° and 70° with the same bandwidth, and compare the
resulting reference tracking and disturbance rejection.

opts2 = pidtuneOptions('PhaseMargin',45);
C2 = pidtune(G,'PI',wc,opts2);
T2 = feedback(G*C2,1);
GS2 = feedback(G,C2);

opts3 = pidtuneOptions('PhaseMargin',70);

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)

4-33

C3 = pidtune(G,'PI',wc,opts3);
T3 = feedback(G*C3,1);
GS3 = feedback(G,C3);

subplot(2,1,1);
stepplot(T1,T2,T3)
legend('PM = 60','PM = 45','PM = 70')
title('Reference Tracking')
subplot(2,1,2);
stepplot(GS1,GS2,GS3)
title('Disturbance Rejection')

Lowering the phase margin to 45° speeds up disturbance rejection, but also increases overshoot in
the reference tracking response. Increasing the phase margin to 70° eliminates the overshoot
completely, but results in extremely sluggish disturbance rejection. You can try different phase
margin values until you find one that balances reference tracking and disturbance rejection suitably
for your application. The effect of the phase margin on this balance depends on the plant model. For
some plant models, the effect is not as large as shown in this example.

If you want to fix both the bandwidth and phase margin of your control system, you can still change
the balance between reference tracking and disturbance rejection using the DesignFocus option of
pidtune. You can set DesignFocus to either 'disturbance-rejection' or 'reference-
tracking' to tune a controller that favors one or the other.

The DesignFocus option is more effective for a control system with more tunable parameters.
Therefore, it does not have much effect when used with a PI controller. To see its effect, design a

4 Designing Compensators

4-34

PIDF controller for the same bandwidth and the default phase margin (60°) using each of the
DesignFocus values. Compare the results.

opts4 = pidtuneOptions('DesignFocus','balanced'); % default focus
C4 = pidtune(G,'PIDF',wc,opts4);
T4 = feedback(G*C4,1);
GS4 = feedback(G,C4);

opts5 = pidtuneOptions('DesignFocus','disturbance-rejection');
C5 = pidtune(G,'PIDF',wc,opts5);
T5 = feedback(G*C5,1);
GS5 = feedback(G,C5);

opts6 = pidtuneOptions('DesignFocus','reference-tracking');
C6 = pidtune(G,'PIDF',wc,opts6);
T6 = feedback(G*C6,1);
GS6 = feedback(G,C6);

subplot(2,1,1);
stepplot(T4,T5,T6)
legend('Balanced','Rejection','Tracking')
title('Reference Tracking')
subplot(2,1,2);
stepplot(GS4,GS5,GS6)
title('Disturbance Rejection')

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)

4-35

When you use the DesignFocus option to favor reference tracking or disturbance rejection in the
tuned control system, you can still adjust phase margin for further fine tuning of the balance between
these two measures of performance. Use DesignFocus and PhaseMargin together to achieve the
performance balance that best meets your design requirements.

The effect of both options on system performance depends strongly on the properties of your plant.
For some plants, changing the PhaseMargin or DesignFocus options has little or no effect.

See Also

More About
• “PID Tuning Algorithm” on page 4-49
• “PID Controller Design at the Command Line”
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)” on

page 4-23

4 Designing Compensators

4-36

Interactively Estimate Plant Parameters from Response Data
This example shows how to use PID Tuner to fit a linear model to measured SISO response data.

If you have System Identification Toolbox software, you can use PID Tuner to estimate the
parameters of a linear plant model based on time-domain response data measured from your system.
PID Tuner then tunes a PID controller for the resulting estimated model. PID Tuner gives you
several techniques to graphically, manually, or automatically adjust the estimated model to match
your response data. This example illustrates some of those techniques.

In this example, you load measured response data from a data file into the MATLAB workspace you
represent the plant as an LTI model. For information about generating simulated data from a
Simulink model, see “Interactively Estimate Plant from Measured or Simulated Response Data”
(Simulink Control Design).

Import Response Data for Identification

1 Open PID Tuner and load measured response data into the MATLAB workspace.

pidTuner(tf(1),'PI')
load PIDPlantMeasuredIOData

When you import response data, PID Tuner assumes that your measured data represents a plant
connected to the PID controller in a negative-feedback loop. In other words, PID Tuner assumes
the following structure for your system. PID Tuner assumes that you injected a step signal at the
plant input u and measured the system response at y, as shown.

The sample data file for this example, contains three variables, each of which is a 501-by-1 array.
inputu is the unit step function injected at u to obtain the response data. outputy is the
measured response of the system at y. The time vector t, runs from 0 to 50 s with a 0.1 s sample
time. Comparing inputu to t shows that the step occurs at t = 5 s.

Tip You can import response data stored as a numeric array (as in this example), a timeseries
object, or an iddata object.

2 In PID Tuner, in the Plant menu, select Identify New Plant.

 Interactively Estimate Plant Parameters from Response Data

4-37

3
In the Plant Identification tab, click Get I/O data and select Step Response. This action
opens the Import Step Response dialog box.

Enter information about the response data. The output signal is the measured system response,
outputy. The input step signal is parametrized as shown in the diagram in the dialog box. Here,

enter 5 for the Onset Lag, and 0.1 for Sample Time. Then, click Import.

4 Designing Compensators

4-38

The Plant Identification plot displays the response data and the response of an initial estimated
plant.

 Interactively Estimate Plant Parameters from Response Data

4-39

Preprocess Data

Depending on the quality and features of your response data, you might want to perform some
preprocessing on the data to improve the estimated plant results. PID Tuner provides several
options for preprocessing response data, such as removing offsets, filtering, or extracting a subset of
the data. In this example, the response data has an offset. It is important for good identification
results to remove data offsets. Use the Preprocess menu to do so. (For information about other data
preprocessing options, see “Preprocess Data” on page 4-46.)

1
On the Plant Identification tab, click Preprocess and select Remove Offset. The
Remove Offset tab opens, displaying time plots of the response data and corresponding input
signal.

2 Select Remove offset from signal and choose the response, Output (y). In the Offset to
remove text box, specify a value of –2. You can also select the signal initial value or signal mean,
or enter a numerical value. The plot updates with an additional trace showing the signal with the
offset applied.

4 Designing Compensators

4-40

3
Click Apply to save the change to the signal. Click Close Remove Offset to return to
the Plant Identification tab.

PID Tuner automatically adjusts the plant parameters to create a new initial guess for the plant
based on the preprocessed response signal.

Adjust Plant Structure and Parameters

PID Tuner allows you to specify a plant structure, such as One Pole, Underdamped Pair, or State-
Space Model. In the Structure menu, choose the plant structure that best matches your response.
You can also add a transport delay, a zero, or an integrator to your plant. For this example, the one-
pole structure gives the qualitatively correct response. You can make further adjustments to the plant
structure and parameter values to make the estimated system’s response a better match to the
measured response data.

PID Tuner gives you several ways to adjust the plant parameters:

• Graphically adjust the response of the estimated system by dragging the adjustors on the plot. In
this example, drag the red x to adjust the estimated plant time constant. PID Tuner recalculates
system parameters as you do so. As you change the estimated system’s response, it becomes
apparent that there is some time delay between the application of the step input at t = 5 s, and
the response of the system to that step input.

 Interactively Estimate Plant Parameters from Response Data

4-41

To add a transport delay to the estimated plant model, in the Plant Structure section, check
Delay. A vertical line appears on the plot, indicating the current value of the delay. Drag the line
left or right to change the delay, and make further adjustments to the system response by
dragging the red x.

• Adjust the numerical values of system parameters such as gains, time constants, and time delays.

To numerically adjust the values of system parameters, click Edit Parameters.

Suppose that you know from an independent measurement that the transport delay in your system
is 1.5 seconds. In the Plant Parameters dialog box, enter 1.5 for τ. Check Fix to fix the
parameter value. When you check Fix for a parameter, neither graphical nor automatic
adjustments to the estimated plant model affect that parameter value.

4 Designing Compensators

4-42

•
Automatically optimize the system parameters to match the measured response data. Click
Auto Estimate to update the estimated system parameters using the current values as an initial
guess.

You can continue to iterate using any of these methods to adjust plant structure and parameter values
until the response of the estimated system adequately matches the measured response.

Save Plant and Tune PID Controller

When you are satisfied with the fit, click Apply. Doing so saves the estimated plant, Plant1, to
the PID Tuner workspace. PID Tuner automatically designs a PI controller for Plant1 and, in the
Step Plot: Reference Tracking plot, displays a new closed-loop response. The Plant menu reflects
that Plant1 is selected for the current controller design.

 Interactively Estimate Plant Parameters from Response Data

4-43

Tip To examine variables stored in the PID Tuner workspace, open the Data Browser.

You can now use the PID Tuner tools to refine the controller design for the estimated plant and
examine tuned system responses.

4 Designing Compensators

4-44

You can also export the identified plant from the PID Tuner workspace to the MATLAB workspace for

further analysis. On the PID Tuner tab, click Export. Check the plant model you want to export
to the MATLAB workspace. For this example, export Plant1, the plant you identified from response

data. You can also export the tuned PID controller. Click OK. The models you selected are saved
to the MATLAB workspace.

Identified plant models are saved as identified LTI models, such as idproc or idss.

Tip Alternatively, right-click a plant in the Data Browser to select it for tuning or export it to the
MATLAB workspace.

See Also

More About
• “Input/Output Data for Identification” on page 4-53
• “Preprocess Data” on page 4-46
• “Choosing Identified Plant Structure” on page 4-54
• “System Identification for PID Control” on page 4-50

 Interactively Estimate Plant Parameters from Response Data

4-45

Preprocess Data

Ways to Preprocess Data
In PID Tuner, you can preprocess plant data before you use it for estimation. After you import I/O
data, on the Plant Identification tab, use the Preprocess menu to select a preprocessing operation.

• “Remove Offset” on page 4-46 — Remove mean values, a constant value, or an initial value from
the data.

• “Scale Data” on page 4-47 — Scale data by a constant value, signal maximum value, or signal
initial value.

• “Extract Data” on page 4-47 — Select a subset of the data to use in the identification. You can
graphically select the data to extract, or enter start and end times in the text boxes.

• “Filter Data” on page 4-47 — Process data using a low-pass, high-pass, or band-pass filter.
• “Resample Data” on page 4-48 –– Resample data using zero-order hold or linear interpolation.
• “Replace Data” on page 4-48 –– Replace data with a constant value, region initial value, region
final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your application.
For instance, you can both filter the data and remove an offset.

Remove Offset
It is important for good identification results to remove data offsets. In the Remove Offset tab, you
can remove offset from all signals at once or select a particular signal using the Remove offset from
signal drop down list. Specify the value to remove using the Offset to remove drop down list. The
options are:

• A constant value. Enter the value in the box. (Default: 0)

4 Designing Compensators

4-46

• Mean of the data, to create zero-mean data.
• Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Scale Data
In the Scale Data tab, you can choose to scale all signals or specify a signal to scale. Select the
scaling value from the Scale to use drop-down list. The options are:

• A constant value. Enter the value in the box. (Default: 1)
• Signal maximum value.
• Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Extract Data
Select a subset of data to use in Extract Data tab. You can extract data graphically or by specifying
start time and end time. To extract data graphically, click and drag the vertical bars to select a region
of the data to use.

Data outside the region that is highlighted yellow is discarded when you click .

Filter Data
You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter blocks high
frequency signals, a high-pass filter blocks low frequency signals, and a band-pass filter combines the
properties of both low- and high-pass filters.

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose to filter all
signals or specify a particular signal. For the low-pass and high-pass filtering, you can specify the
normalized cutoff frequency of the signal. Where, a normalized frequency of 1 corresponds to half the
sampling rate. For the band-pass filter, you can specify the normalized start and end frequencies.
Specify the frequencies by either entering the value in the associated field on the tab. Alternatively,
you can specify filter frequencies graphically, by dragging the vertical bars in the frequency-domain
plot of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking .

 Preprocess Data

4-47

Resample Data
In the Resample Data tab, specify the sampling period using the Resample with sample period:
field. You can resample your data using one of the following interpolation methods:

• Zero-order hold — Fill the missing data sample with the data value immediately preceding it.
• Linear interpolation — Fill the missing data using a line that connects the two data points.

By default, the resampling method is set to zero-order hold. You can select the linear
interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Replace Data
In the Replace Data tab, select data to replace by dragging across a region in the plot. Once you
select data, choose how to replace it using the Replace selected data drop-down list. You can
replace the data you select with one of these options:

• A constant value
• Region initial value
• Region final value
• A line

The replaced preview data changes color and the replacement data appears on the plot. At any time
before updating, click Clear preview to clear the data you replaced and start over.

After making choices, update the existing data with the preprocessed data by clicking .

Replace Data can be useful, for example, to replace outliers. Outliers can be defined as data values
that deviate from the mean by more than three standard deviations. When estimating parameters
from data containing outliers, the results may not be accurate. Hence, you might choose to replace
the outliers in the data before you estimate the parameters.

See Also

More About
• “Input/Output Data for Identification” on page 4-53
• “System Identification for PID Control” on page 4-50
• “Interactively Estimate Plant Parameters from Response Data” on page 4-37

4 Designing Compensators

4-48

PID Tuning Algorithm
Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded input.
• Adequate performance — The closed-loop system tracks reference changes and suppresses

disturbances as rapidly as possible. The larger the loop bandwidth (the frequency of unity open-
loop gain), the faster the controller responds to changes in the reference or disturbances in the
loop.

• Adequate robustness — The loop design has enough gain margin and phase margin to allow for
modeling errors or variations in system dynamics.

MathWorks algorithm for tuning PID controllers meets these objectives by tuning the PID gains to
achieve a good balance between performance and robustness. By default, the algorithm chooses a
crossover frequency (loop bandwidth) based on the plant dynamics, and designs for a target phase
margin of 60°. When you interactively change the response time, bandwidth, transient response, or
phase margin using the PID Tuner interface, the algorithm computes new PID gains.

For a given robustness (minimum phase margin), the tuning algorithm chooses a controller design
that balances the two measures of performance, reference tracking and disturbance rejection. You
can change the design focus to favor one of these performance measures. To do so, use the
DesignFocus option of pidtune at the command line or the Options dialog box in PID Tuner.

When you change the design focus, the algorithm attempts to adjust the gains to favor either
reference tracking or disturbance rejection, while achieving the same minimum phase margin. The
more tunable parameters there are in the system, the more likely it is that the PID algorithm can
achieve the desired design focus without sacrificing robustness. For example, setting the design focus
is more likely to be effective for PID controllers than for P or PI controllers. In all cases, fine-tuning
the performance of the system depends strongly on the properties of your plant. For some plants,
changing the design focus has little or no effect.

 PID Tuning Algorithm

4-49

System Identification for PID Control

Plant Identification
In many situations, a dynamic representation of the system you want to control is not readily
available. One solution to this problem is to obtain a dynamical model using identification techniques.
The system is excited by a measurable signal and the corresponding response of the system is
collected at some sample rate. The resulting input-output data is then used to obtain a model of the
system such as a transfer function or a state-space model. This process is called system identification
or estimation. The goal of system identification is to choose a model that yields the best possible fit
between the measured system response to a particular input and the model’s response to the same
input.

If you have a Simulink model of your control system, you can simulate input/output data instead of
measuring it. The process of estimation is the same. The system response to some known excitation is
simulated, and a dynamical model is estimated based upon the resulting simulated input/output data.

Whether you use measured or simulated data for estimation, once a suitable plant model is identified,
you impose control objectives on the plant based on your knowledge of the desired behavior of the
system that the plant model represents. You then design a feedback controller to meet those
objectives.

If you have System Identification Toolbox software, you can use PID Tuner for both plant
identification and controller design in a single interface. You can import input/output data and use it
to identify one or more plant models. Or, you can obtain simulated input/output data from a Simulink
model and use that to identify one or more plant models. You can then design and verify PID
controllers using these plants. PID Tuner also allows you to directly import plant models, such as
one you have obtained from an independent identification task.

For an overview of system identification, see About System Identification (System Identification
Toolbox).

Linear Approximation of Nonlinear Systems for PID Control
The dynamical behavior of many systems can be described adequately by a linear relationship
between the system’s input and output. Even when behavior becomes nonlinear in some operating
regimes, there are often regimes in which the system dynamics are linear. For example, the behavior
of an operational amplifier or the lift-vs-force dynamics of aerodynamic bodies can be described by
linear models, within a certain limited operating range of inputs. For such a system, you can perform
an experiment (or a simulation) that excites the system only in its linear range of behavior and collect
the input/output data. You can then use the data to estimate a linear plant model, and design a PID
controller for the linear model.

In other cases, the effects of nonlinearities are small. In such a case, a linear model can provide a
good approximation, such that the nonlinear deviations are treated as disturbances. Such
approximations depend heavily on the input profile, the amplitude and frequency content of the
excitation signal.

Linear models often describe the deviation of the response of a system from some equilibrium point,
due to small perturbing inputs. Consider a nonlinear system whose output, y(t), follows a prescribed
trajectory in response to a known input, u(t). The dynamics are described by dx(t)/dt = f(x, u), y =
g(x,u) . Here, x is a vector of internal states of the system, and y is the vector of output variables. The

4 Designing Compensators

4-50

functions f and g, which can be nonlinear, are the mathematical descriptions of the system and
measurement dynamics. Suppose that when the system is at an equilibrium condition, a small
perturbation to the input, Δu, leads to a small perturbation in the output, Δy:

Δẋ = ∂ f
∂x Δx + ∂ f

∂uΔu,

Δy = ∂g
∂x Δx + ∂g

∂uΔu .

For example, consider the system of the following Simulink block diagram:

When operating in a disturbance-free environment, the nominal input of value 50 keeps the plant
along its constant trajectory of value 2000. Any disturbances would cause the plant to deviate from
this value. The PID Controller’s task is to add a small correction to the input signal that brings the
system back to its nominal value in a reasonable amount of time. The PID Controller thus needs to
work only on the linear deviation dynamics even though the actual plant itself might be nonlinear.
Thus, you might be able to achieve effective control over a nonlinear system in some regimes by
designing a PID controller for a linear approximation of the system at equilibrium conditions.

Linear Process Models
A common use case is designing PID controllers for the steady-state operation of manufacturing
plants. In these plants, a model relating the effect of a measurable input variable on an output
quantity is often required in the form of a SISO plant. The overall system may be MIMO in nature, but
the experimentation or simulation is carried out in a way that makes it possible to measure the
incremental effect of one input variable on a selected output. The data can be quite noisy, but since
the expectation is to control only the dominant dynamics, a low-order plant model often suffices. Such
a proxy is obtained by collecting or simulating input-output data and deriving a process model (low
order transfer function with unknown delay) from it. The excitation signal for deriving the data can
often be a simple bump in the value of the selected input variable.

Advanced System Identification Tasks
In PID Tuner, you can only identify single-input, single output, continuous-time plant models.
Additionally, PID Tuner cannot perform the following system identification tasks:

• Identify transfer functions of arbitrary number of poles and zeros. (PID Tuner can identify
transfer functions up to three poles and one zero, plus an integrator and a time delay. PID Tuner
can identify state-space models of arbitrary order.)

 System Identification for PID Control

4-51

• Estimate the disturbance component of a model, which can be useful for separating measured
dynamics from noise dynamics.

• Validate estimation by comparing the plant response against an independent dataset.
• Perform residual analysis.

If you need these enhanced identification features, import your data into the System Identification
app (System Identification). Use the System Identification app to perform model identification
and export the identified model to the MATLAB workspace. Then import the identified model into PID
Tuner for PID controller design.

For more information about the System Identification Tool, see “Identify Linear Models Using System
Identification App” (System Identification Toolbox).

See Also
System Identification

More About
• “Input/Output Data for Identification” on page 4-53
• “Choosing Identified Plant Structure” on page 4-54
• “Interactively Estimate Plant Parameters from Response Data” on page 4-37

4 Designing Compensators

4-52

Input/Output Data for Identification

Data Preparation
Identification of a plant model for PID tuning requires a single-input, single-output data set.

If you have measured data, use the data import dialogs to bring in identification data. Some common
sources of identification data are transient tests such as bump test and impact test. For such data,
PID Tuner provides dedicated dialogs that require you to specify data for only the output signal
while characterizing the input by its shape. For an example, see “Interactively Estimate Plant
Parameters from Response Data” on page 4-37.

If you want to obtain input/output data by simulating a Simulink model, the PID Tuner interface lets
you specify the shape of the input stimulus used to generate the response. For an example, see the
Simulink Control Design™ example “Design a PID Controller Using Simulated I/O Data.”

Data Preprocessing
PID Tuner lets you preprocess your imported or simulated data. PID Tuner provides various options
for detrending, scaling, and filtering the data.

It is strongly recommended to remove any equilibrium-related signal offsets from the input and
output signals before proceeding with estimation. You can also filter the data to focus the signal
contents to the frequency band of interest.

Some data processing actions can alter the nature of the data, which can result in transient data
(step, impulse or wide pulse responses) to be treated as arbitrary input/output data. When that
happens the identification plot does not show markers for adjusting the model time constants and
damping coefficient.

For an example that includes a data-preprocessing step, see: “Interactively Estimate Plant
Parameters from Response Data” on page 4-37.

For further information about data-preprocessing options, see “Preprocess Data” on page 4-46.

 Input/Output Data for Identification

4-53

Choosing Identified Plant Structure
PID Tuner provides two types of model structures for representing the plant dynamics: process
models and state-space models.

Use your knowledge of system characteristics and the level of accuracy required by your application
to pick a model structure. In absence of any prior information, you can gain some insight into the
order of dynamics and delays by analyzing the experimentally obtained step response and frequency
response of the system. For more information see the following in the System Identification Toolbox
documentation:

• “Correlation Models” (System Identification Toolbox)
• “Frequency-Response Models” (System Identification Toolbox)

Each model structure you choose has associated dynamic elements, or model parameters. You adjust
the values of these parameters manually or automatically to find an identified model that yields a
satisfactory match to your measured or simulated response data. In many cases, when you are unsure
of the best structure to use, it helps to start with the simplest model structure, transfer function with
one pole. You can progressively try identification with higher-order structures until a satisfactory
match between the plant response and measured output is achieved. The state-space model structure
allows an automatic search for optimal model order based on an analysis of the input-output data.

When you begin the plant identification task, a transfer function model structure with one real pole is
selected by default. This default set up is not sensitive to the nature of the data and may not be a
good fit for your application. It is therefore recommended that you choose a suitable model structure
before performing parameter identification.

Process Models
Process models are transfer functions with 3 or fewer poles, and can be augmented by addition of
zero, delay and integrator elements. Process models are parameterized by model parameters
representing time constants, gain, and time delay. In PID Tuner, choose a process model in the
Plant Identification tab using the Structure menu.

4 Designing Compensators

4-54

For any chosen structure you can optionally add a delay, a zero and/or an integrator element using
the corresponding checkboxes. The model transfer function configured by these choices is displayed
next to the Structure menu.

The simplest available process model is a transfer function with one real pole and no zero or delay
elements:

H s = K
T1s + 1 .

This model is defined by the parameters K, the gain, and T1, the first time constant. The most complex
process-model structure choose has three poles, an additional integrator, a zero, and a time delay,
such as the following model, which has one real pole and one complex conjugate pair of poles:

H s = K
Tzs + 1

s T1s + 1 Tω
2s2 + 2ζTωs + 1

e−τs .

 Choosing Identified Plant Structure

4-55

In this model, the configurable parameters include the time constants associated with the poles and
the zero, T1, Tω, and Tz. The other parameters are the damping coefficient ζ, the gain K, and the time
delay τ.

When you select a process model type, PID Tuner automatically computes initial values for the plant
parameters and displays a plot showing both the estimated model response and your measured or
simulated data. You can edit the parameter values graphically using indicators on the plot, or
numerically using the Plant Parameters editor. For an example illustrating this process, see
“Interactively Estimate Plant Parameters from Response Data” on page 4-37.

The following table summarizes the various parameters that define the available types of process
models.

Parameter Used By Description
K — Gain All transfer functions Can take any real value.

In the plot, drag the plant
response curve (blue) up or
down to adjust K.

T1 — First time constant Transfer function with one or
more real poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag the red x left
(towards zero) or right (towards
T) to adjust T1.

T2— Second time constant Transfer function with two real
poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag the magenta x
left (towards zero) or right
(towards T) to adjust T2.

Tω — Time constant associated
with the natural frequency ωn,
where Tω = 1/ωn

Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust Tω.

ζ — Damping coefficient Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between 0
and 1.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust ζ.

4 Designing Compensators

4-56

Parameter Used By Description
τ — Transport delay Any transfer function Can take any value between 0

and T, the time span of
measured or simulated data.

In the plot, drag the orange
vertical bar left (towards zero)
or right (towards T) to adjust τ.

Tz — Model zero Any transfer function Can take any value between –T
and T, the time span of
measured or simulated data.

In the plot, drag the red circle
left (towards –T) or right
(towards T) to adjust Tz.

Integrator Any transfer function Adds a factor of 1/s to the
transfer function. There is no
associated parameter to adjust.

State-Space Models
The state-space model structure for identification is primarily defined by the choice of number of
states, the model order. Use the state-space model structure when higher order models than those
supported by process model structures are required to achieve a satisfactory match to your measured
or simulated I/O data. In the state-space model structure, the system dynamics are represented by
the state and output equations:

ẋ = Ax + Bu,
y = Cx + Du .

x is a vector of state variables, automatically chosen by the software based on the selected model
order. u represents the input signal, and y the output signals.

To use a state-space model structure, in the Plant Identification tab, in the Structure menu, select
State-Space Model. Then click Configure Structure to open the State-Space Model Structure
dialog box.

 Choosing Identified Plant Structure

4-57

Use the dialog box to specify model order, delay and feedthrough characteristics. If you are unsure
about the order, select Pick best value in the range, and enter a range of orders. In this case, when
you click Estimate in the Plant Estimation tab, the software displays a bar chart of Hankel singular
values. Choose a model order equal to the number of Hankel singular values that make significant
contributions to the system dynamics.

When you choose a state-space model structure, the identification plot shows a plant response (blue)
curve only if a valid estimated model exists. For example, if you change structure after estimating a
process model, the state-space equivalent of the estimated model is displayed. If you change the
model order, the plant response curve disappears until a new estimation is performed.

When using the state-space model structure, you cannot directly interact with the model parameters.
The identified model should thus be considered unstructured with no physical meaning attached to
the state variables of the model.

However, you can graphically adjust the input delay and the overall gain of the model. When you
select a state-space model with a time delay, the delay is represented on the plot by a vertical orange
bar is shown on the plot. Drag this bar horizontally to change the delay value. Drag the plant
response (blue) curve up and down to adjust the model gain.

Existing Plant Models
Any previously imported or identified plant models are listed the Plant List section of the Data
Browser.

4 Designing Compensators

4-58

You can define the model structure and initialize the model parameter values using one of these
plants. To do so, in the Plant Identification tab, in the Structure menu, select the linear plant
model you want to use for structure an initialization.

If the plant you select is a process model (idproc object), PID Tuner uses its structure. If the plant
is any other model type, PID Tuner uses the state-space model structure.

Switching Between Model Structures
When you switch from one model structure to another, the software preserves the model
characteristics (pole/zero locations, gain, delay) as much as possible. For example, when you switch

 Choosing Identified Plant Structure

4-59

from a one-pole model to a two-pole model, the existing values of T1, Tz, τ and K are retained, T2 is
initialized to a default (or previously assigned, if any) value.

Estimating Parameter Values
Once you have selected a model structure, you have several options for manually or automatically
adjusting parameter values to achieve a good match between the estimated model response and your
measured or simulated input/output data. For an example that illustrates all these options, see:

• “Interactively Estimate Plant Parameters from Response Data” on page 4-37 (Control System
Toolbox)

• “Interactively Estimate Plant from Measured or Simulated Response Data” (Simulink Control
Design) Simulink Control Design)

PID Tuner does not perform a smart initialization of model parameters when a model structure is
selected. Rather, the initial values of the model parameters, reflected in the plot, are arbitrarily-
chosen middle of the range values. If you need a good starting point before manually adjusting the
parameter values, use the Initialize and Estimate option from the Plant Identification tab.

Handling Initial Conditions
In some cases, the system response is strongly influenced by the initial conditions. Thus a description
of the input to output relationship in the form of a transfer function is insufficient to fit the observed
data. This is especially true of systems containing weakly damped modes. PID Tuner allows you to
estimate initial conditions in addition to the model parameters such that the sum of the initial
condition response and the input response matches the observed output well. Use the Estimation
Options dialog box to specify how the initial conditions should be handled during automatic
estimation. By default, the initial condition handling (whether to fix to zero values or to estimate) is
automatically performed by the estimation algorithm. However, you can enforce a certain choice by
using the Initial Conditions menu.

Initial conditions can only be estimated with automatic estimation. Unlike the model parameters, they
cannot be modified manually. However, once estimated they remain fixed to their estimated values,
unless the model structure is changed or new identification data is imported.

If you modify the model parameters after having performed an automatic estimation, the model
response will show a fixed contribution (i.e., independent of model parameters) from initial
conditions. In the following plot, the effects of initial conditions were identified to be particularly
significant. When the delay is adjusted afterwards, the portion of the response to the left of the input
delay marker (the τ Adjustor) comes purely from initial conditions. The portion to the right of the τ
Adjustor contains the effects of both the input signal as well as the initial conditions.

4 Designing Compensators

4-60

See Also

More About
• “System Identification for PID Control” on page 4-50
• “Interactively Estimate Plant Parameters from Response Data” on page 4-37

 Choosing Identified Plant Structure

4-61

Pole Placement
Closed-loop pole locations have a direct impact on time response characteristics such as rise time,
settling time, and transient oscillations. Root locus uses compensator gains to move closed-loop poles
to achieve design specifications for SISO systems. You can, however, use state-space techniques to
assign closed-loop poles. This design technique is known as pole placement, which differs from root
locus in the following ways:

• Using pole placement techniques, you can design dynamic compensators.
• Pole placement techniques are applicable to MIMO systems.

Pole placement requires a state-space model of the system (use ss to convert other model formats to
state space). In continuous time, such models are of the form

ẋ = Ax + Bu
y = Cx + Du

where u is the vector of control inputs, x is the state vector, and y is the vector of measurements.

State-Feedback Gain Selection
Under state feedback u = − Kx, the closed-loop dynamics are given by

ẋ = (A− BK)x

and the closed-loop poles are the eigenvalues of A-BK. Using the place function, you can compute a
gain matrix K that assigns these poles to any desired locations in the complex plane (provided that
(A,B) is controllable).

For example, for state matrices A and B, and vector p that contains the desired locations of the closed
loop poles,

K = place(A,B,p);

computes an appropriate gain matrix K.

State Estimator Design
You cannot implement the state-feedback law u = − Kx unless the full state x is measured. However,
you can construct a state estimate ξ such that the law u = − Kξ retains similar pole assignment and
closed-loop properties. You can achieve this by designing a state estimator (or observer) of the form

ξ̇ = Aξ + Bu + L(y − Cξ − Du)

The estimator poles are the eigenvalues of A-LC, which can be arbitrarily assigned by proper
selection of the estimator gain matrix L, provided that (C, A) is observable. Generally, the estimator
dynamics should be faster than the controller dynamics (eigenvalues of A-BK).

Use the place function to calculate the L matrix

L = place(A',C',q).'

where A and C are the state and output matrices, and q is the vector containing the desired closed-
loop poles for the observer.

4 Designing Compensators

4-62

Replacing x by its estimate ξ in u = − Kx yields the dynamic output-feedback compensator

ξ̇ = [A− LC− (B− LD)K]ξ + Ly
u = − Kξ

Note that the resulting closed-loop dynamics are

ẋ
ė

=
A− BK BK

0 A− LC
x
e

, e = x− ξ

Hence, you actually assign all closed-loop poles by independently placing the eigenvalues of A-BK and
A-LC.

Example

Given a continuous-time state-space model

sys_pp = ss(A,B,C,D)

with seven outputs and four inputs, suppose you have designed

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as control inputs
• A state estimator with gain L using outputs 4, 7, and 1 of the plant as sensors
• Input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the dynamic compensator using this
code:

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys_pp,K,L,sensors,known,controls)

Pole Placement Tools
You can use functions to

• Compute gain matrices K and L that achieve the desired closed-loop pole locations.
• Form the state estimator and dynamic compensator using these gains.

The following table summarizes the functions for pole placement.

Functions Description
estim Form state estimator given estimator gain
place Pole placement design
reg Form output-feedback compensator given state-feedback and estimator gains

Caution
Pole placement can be badly conditioned if you choose unrealistic pole locations. In particular, you
should avoid:

 Pole Placement

4-63

• Placing multiple poles at the same location.
• Moving poles that are weakly controllable or observable. This typically requires high gain, which

in turn makes the entire closed-loop eigenstructure very sensitive to perturbation.

See Also
estim | place | reg

4 Designing Compensators

4-64

Linear-Quadratic-Gaussian (LQG) Design
Linear-quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal
dynamic regulators and servo controllers with integral action (also known as setpoint trackers). This
technique allows you to trade off regulation/tracker performance and control effort, and to take into
account process disturbances and measurement noise.

To design LQG regulators and setpoint trackers, you perform the following steps:

1 Construct the LQ-optimal gain.
2 Construct a Kalman filter (state estimator).
3 Form the LQG design by connecting the LQ-optimal gain and the Kalman filter.

For more information about using LQG design to create LQG regulators , see “Linear-Quadratic-
Gaussian (LQG) Design for Regulation” on page 4-65.

For more information about using LQG design to create LQG servo controllers, see “Linear-Quadratic-
Gaussian (LQG) Design of Servo Controller with Integral Action” on page 4-68.

These topics focus on the continuous-time case. For information about discrete-time LQG design, see
the dlqr and kalman reference pages.

Linear-Quadratic-Gaussian (LQG) Design for Regulation
You can design an LQG regulator to regulate the output y around zero in the following model.

The plant in this model experiences disturbances (process noise) w and is driven by controls u. The
regulator relies on the noisy measurements y to generate these controls. The plant state and
measurement equations take the form of

ẋ = Ax + Bu + Gw
y = Cx + Du + Hw + v

and both w and v are modeled as white noise.

Note LQG design requires a state-space model of the plant. You can use ss to convert other model
formats to state space.

To design LQG regulators, you can use the design techniques shown in the following table.

 Linear-Quadratic-Gaussian (LQG) Design

4-65

To design an LQG regulator using... Use the following commands:
A quick, one-step design technique when the
following is true:

• You need the optimal LQG controller and either
E(wv') or H is nonzero.

• All known (deterministic) inputs are control
inputs and all outputs are measured.

• Integrator states are weighted independently of
states of plants and control inputs.

lqg

A more flexible, three-step design technique that
allows you to specify:

• Arbitrary G and H.
• Known (deterministic) inputs that are not

controls and/or outputs that are not measured.
• A flexible weighting scheme for integrator states,

plant states, and controls.

lqr, kalman, and lqgreg

For more information, see

• “Constructing the Optimal State-Feedback
Gain for Regulation” on page 4-66

• “Constructing the Kalman State Estimator”
on page 4-66

• “Forming the LQG Regulator” on page 4-
68

Constructing the Optimal State-Feedback Gain for Regulation

You construct the LQ-optimal gain from the following elements:

• State-space system matrices
• Weighting matrices Q, R, and N, which define the tradeoff between regulation performance (how

fast x(t) goes to zero) and control effort.

To construct the optimal gain, type the following command:

K= lqr(A,B,Q,R,N)

This command computes the optimal gain matrix K, for which the state feedback law u = − Kx
minimizes the following quadratic cost function for continuous time:

J(u) =∫0 ∞ xTQx + 2xTNu + uTRu dt

The software computes the gain matrix K by solving an algebraic Riccati equation.

For information about constructing LQ-optimal gain, including the cost function that the software
minimizes for discrete time, see the lqr reference page.

Constructing the Kalman State Estimator

You need a Kalman state estimator for LQG regulation and servo control because you cannot
implement optimal LQ-optimal state feedback without full state measurement.

You construct the state estimate x such that u = − Kx remains optimal for the output-feedback
problem. You construct the Kalman state estimator gain from the following elements:

4 Designing Compensators

4-66

• State-space plant model sys
• Noise covariance data, Qn, Rn, and Nn

The following figure shows the required dimensions for Qn, Rn, and Nn. If Nn is 0, you can omit it.

Required Dimensions for Qn, Rn, and Nn

Note You construct the Kalman state estimator in the same way for both regulation and servo
control.

To construct the Kalman state estimator, type the following command:

[kest,L,P] = kalman(sys,Qn,Rn,Nn);

This command computes a Kalman state estimator, kest with the following plant equations:

ẋ = Ax + Bu + Gw
y = Cx + Du + Hw + v

where w and v are modeled as white noise. L is the Kalman gain and P the covariance matrix.

The software generates this state estimate using the Kalman filter

d
dt x = Ax + Bu + L(y − Cx − Du)

with inputs u (controls) and y (measurements). The noise covariance data

E(wwT) = Qn, E(vvT) = Rn, E(wvT) = Nn

determines the Kalman gain L through an algebraic Riccati equation.

The Kalman filter is an optimal estimator when dealing with Gaussian white noise. Specifically, it
minimizes the asymptotic covariance
 lim

t ∞
E x− x x− x T

of the estimation error x− x .

For more information, see the kalman reference page. For a complete example of a Kalman filter
implementation, see Kalman Filtering.

 Linear-Quadratic-Gaussian (LQG) Design

4-67

Forming the LQG Regulator

To form the LQG regulator, connect the Kalman filter kest and LQ-optimal gain K by typing the
following command:

regulator = lqgreg(kest, K);

This command forms the LQG regulator shown in the following figure.

The regulator has the following state-space equations:

d
dt x = [A− LC− (B− LD)K]x + Ly

u = − Kx

For more information on forming LQG regulators, see lqgreg and “LQG Regulation: Rolling Mill
Case Study”.

Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with
Integral Action
You can design a servo controller with integral action for the following model:

The servo controller you design ensures that the output y tracks the reference command r while
rejecting process disturbances w and measurement noise v.

The plant in the previous figure is subject to disturbances w and is driven by controls u. The servo
controller relies on the noisy measurements y to generate these controls. The plant state and
measurement equations are of the form

ẋ = Ax + Bu + Gw
y = Cx + Du + Hw + v

and both w and v are modeled as white noise.

Note LQG design requires a state-space model of the plant. You can use ss to convert other model
formats to state space.

To design LQG servo controllers, you can use the design techniques shown in the following table.

4 Designing Compensators

4-68

To design an LQG servo controller using... Use the following commands:
A quick, one-step design technique when the
following is true:

• You need the optimal LQG controller and either
E(wv') or H is nonzero.

• All known (deterministic) inputs are control
inputs and all outputs are measured.

• Integrator states are weighted independently of
states of plants and control inputs.

lqg

A more flexible, three-step design technique that
allows you to specify:

• Arbitrary G and H.
• Known (deterministic) inputs that are not

controls and/or outputs that are not measured.
• A flexible weighting scheme for integrator states,

plant states, and controls.

lqi, kalman, and lqgtrack

For more information, see

• “Constructing the Optimal State-Feedback
Gain for Servo Control” on page 4-69

• “Constructing the Kalman State Estimator”
on page 4-69

• “Forming the LQG Servo Control” on page
4-71

Constructing the Optimal State-Feedback Gain for Servo Control

You construct the LQ-optimal gain from the

• State-space plant model sys
• Weighting matrices Q, R, and N, which define the tradeoff between tracker performance and

control effort

To construct the optimal gain, type the following command:

K= lqi(sys,Q,R,N)

This command computes the optimal gain matrix K, for which the state feedback law
u = − Kz = − K[x; xi] minimizes the following quadratic cost function for continuous time:

J(u) =∫0 ∞ zTQz + uTRu + 2zTNu dt

The software computes the gain matrix K by solving an algebraic Riccati equation.

For information about constructing LQ-optimal gain, including the cost function that the software
minimizes for discrete time, see the lqi reference page.

Constructing the Kalman State Estimator

You need a Kalman state estimator for LQG regulation and servo control because you cannot
implement LQ-optimal state feedback without full state measurement.

You construct the state estimate x such that u = − Kx remains optimal for the output-feedback
problem. You construct the Kalman state estimator gain from the following elements:

 Linear-Quadratic-Gaussian (LQG) Design

4-69

• State-space plant model sys
• Noise covariance data, Qn, Rn, and Nn

The following figure shows the required dimensions for Qn, Rn, and Nn. If Nn is 0, you can omit it.

Required Dimensions for Qn, Rn, and Nn

Note You construct the Kalman state estimator in the same way for both regulation and servo
control.

To construct the Kalman state estimator, type the following command:

[kest,L,P] = kalman(sys,Qn,Rn,Nn);

This command computes a Kalman state estimator, kest with the following plant equations:

ẋ = Ax + Bu + Gw
y = Cx + Du + Hw + v

where w and v are modeled as white noise. L is the Kalman gain and P the covariance matrix.

The software generates this state estimate using the Kalman filter

d
dt x = Ax + Bu + L(y − Cx − Du)

with inputs u (controls) and y (measurements). The noise covariance data

E(wwT) = Qn, E(vvT) = Rn, E(wvT) = Nn

determines the Kalman gain L through an algebraic Riccati equation.

The Kalman filter is an optimal estimator when dealing with Gaussian white noise. Specifically, it
minimizes the asymptotic covariance
 lim

t ∞
E x− x x− x T

of the estimation error x− x .

For more information, see the kalman reference page. For a complete example of a Kalman filter
implementation, see Kalman Filtering.

4 Designing Compensators

4-70

Forming the LQG Servo Control

To form a two-degree-of-freedom LQG servo controller, connect the Kalman filter kest and LQ-
optimal gain K by typing the following command:

servocontroller = lqgtrack(kest, K);

This command forms the LQG servo controller shown in the following figure.

The servo controller has the following state-space equations:

ẋ
ẋi

=
A− BKx− LC + LDKx −BKi + LDKi

0 0
x
xi

+
0 L
I −I

r
y

u = −Kx −Ki
x
xi

For more information on forming LQG servo controllers, including how to form a one-degree-of-
freedom LQG servo controller, see the lqgtrack reference page.

See Also
kalman | lqg | lqgreg | lqgtrack | lqi | lqr

Related Examples
• Kalman Filtering
• “Design an LQG Regulator” on page 4-72
• “Design an LQG Servo Controller” on page 4-75
• “Design an LQR Servo Controller in Simulink” on page 4-78

 Linear-Quadratic-Gaussian (LQG) Design

4-71

Design an LQG Regulator
As an example of LQG design, consider the following regulation problem.

The goal is to regulate the plant output y around zero. The input disturbance d is low frequency with
power spectral density (PSD) concentrated below 10 rad/s. For LQG design purposes, it is modeled as
white noise driving a lowpass filter with a cutoff at 10 rad/s, shown in the following figure.

For simplicity, this noise is modeled as Gaussian white noise with variance of 1.

The following figure shows the Bode magnitude of the shaping filter.

Bode Magnitude of the Lowpass Filter

There is some measurement noise n, with noise intensity given by

E(n2) = 0.01

Use the cost function

J(u) =∫0 ∞(10y2 + u2)dt

to specify the tradeoff between regulation performance and cost of control. The following equations
represent an open-loop state-space model:

ẋ = Ax + Bu + Bd (state equations)
y = Cx + n (measurements)

4 Designing Compensators

4-72

where (A,B,C) is a state-space realization of 100/(s2 + s + 100).

The following commands design the optimal LQG regulator F(s) for this problem:

sys = ss(tf(100,[1 1 100])) % State-space plant model

% Design LQ-optimal gain K
K = lqry(sys,10,1) % u = -Kx minimizes J(u)

% Separate control input u and disturbance input d
P = sys(:,[1 1]);
% input [u;d], output y

% Design Kalman state estimator Kest.
Kest = kalman(P,1,0.01)

% Form LQG regulator = LQ gain + Kalman filter.
F = lqgreg(Kest,K)

These commands returns a state-space model F of the LQG regulator F(s). The lqry, kalman, and
lqgreg functions perform discrete-time LQG design when you apply them to discrete plants.

To validate the design, close the loop with feedback, create and add the lowpass filter in series with
the closed-loop system, and compare the open- and closed-loop impulse responses by using the
impulse function.

% Close loop
clsys = feedback(sys,F,+1)
% Note positive feedback.

% Create the lowpass filter and add it in series with clsys.
s = tf('s');
lpf= 10/(s+10) ;
clsys_fin = lpf*clsys;

% Open- vs. closed-loop impulse responses
impulse(sys,'r--',clsys_fin,'b-')

These commands produce the following figure, which compares the open- and closed-loop impulse
responses for this example.

 Design an LQG Regulator

4-73

Comparison of Open- and Closed-Loop Impulse Response

See Also
kalman | lqgreg

Related Examples
• Kalman Filtering
• “Linear-Quadratic-Gaussian (LQG) Design” on page 4-65
• “Design an LQG Servo Controller” on page 4-75
• “Design an LQR Servo Controller in Simulink” on page 4-78

4 Designing Compensators

4-74

Design an LQG Servo Controller
This example shows you how to design a servo controller for the following system.

The plant has three states (x), two control inputs (u), two random inputs (w), one output (y),
measurement noise for the output (v), and the following state and measurement equations:

ẋ = Ax + Bu + Gw
y = Cx + Du + Hw + v

where

A =
0 1 0
0 0 1
1 0 0

B =
0.3 1
0 1

−0.3 0.9
G =

−0.7 1.12
−1.17 1
0.14 1.5

C = 1.9 1.3 1 D = 0.53 −0.61 H = −1.2 −0.89

The system has the following noise covariance data:

Qn = E(wwT) =
4 2
2 1

Rn = E(vvT) = 0.7

Use the following cost function to define the tradeoff between tracker performance and control effort:

J(u) =∫0 ∞ 0.1xTx + xi
2 + uT 1 0

0 2
u dt

To design an LQG servo controller for this system:

1 Create the state space system by typing the following in the MATLAB Command Window:

A = [0 1 0;0 0 1;1 0 0];
B = [0.3 1;0 1;-0.3 0.9];
G = [-0.7 1.12; -1.17 1; .14 1.5];
C = [1.9 1.3 1];
D = [0.53 -0.61];
H = [-1.2 -0.89];
sys = ss(A,[B G],C,[D H]);

2 Construct the optimal state-feedback gain using the given cost function by typing the following
commands:

nx = 3; %Number of states
ny = 1; %Number of outputs
Q = blkdiag(0.1*eye(nx),eye(ny));
R = [1 0;0 2];
K = lqi(ss(A,B,C,D),Q,R);

3 Construct the Kalman state estimator using the given noise covariance data by typing the
following commands:

 Design an LQG Servo Controller

4-75

Qn = [4 2;2 1];
Rn = 0.7;
kest = kalman(sys,Qn,Rn);

4 Connect the Kalman state estimator and the optimal state-feedback gain to form the LQG servo
controller by typing the following command:

trksys = lqgtrack(kest,K)

This command returns the following LQG servo controller:

>> trksys = lqgtrack(kest,K)

a =
 x1_e x2_e x3_e xi1
 x1_e -2.373 -1.062 -1.649 0.772
 x2_e -3.443 -2.876 -1.335 0.6351
 x3_e -1.963 -2.483 -2.043 0.4049
 xi1 0 0 0 0

b =
 r1 y1
 x1_e 0 0.2849
 x2_e 0 0.7727
 x3_e 0 0.7058
 xi1 1 -1

c =
 x1_e x2_e x3_e xi1
 u1 -0.5388 -0.4173 -0.2481 0.5578
 u2 -1.492 -1.388 -1.131 0.5869

d =
 r1 y1
 u1 0 0
 u2 0 0

Input groups:
 Name Channels
 Setpoint 1
 Measurement 2

Output groups:
 Name Channels
 Controls 1,2

Continuous-time model.

See Also
kalman | lqgtrack | lqi

Related Examples
• Kalman Filtering
• “Linear-Quadratic-Gaussian (LQG) Design” on page 4-65
• “Design an LQG Regulator” on page 4-72

4 Designing Compensators

4-76

• “Design an LQR Servo Controller in Simulink” on page 4-78

 Design an LQG Servo Controller

4-77

Design an LQR Servo Controller in Simulink
The following figure shows a Simulink block diagram shows a tracking problem in aircraft autopilot
design. To open this diagram, type lqrpilot at the MATLAB prompt.

Key features of this diagram to note are the following:

• The Linearized Dynamics block contains the linearized airframe.
• sf_aerodyn is an S-Function block that contains the nonlinear equations for (θ, ϕ) = (0, 15∘).
• The error signal between ϕ and the ϕref is passed through an integrator. This aids in driving the

error to zero.

State-Space Equations for an Airframe
Beginning with the standard state-space equation

ẋ = Ax + Bu

where

x = [u, v, w, p, q, r, θ, ϕ]T

The variables u, v, and w are the three velocities with respect to the body frame, shown as follows.

4 Designing Compensators

4-78

Body Coordinate Frame for an Aircraft

The variables ϕ and θ are roll and pitch, and p, q, and r are the roll, pitch, and yaw rates, respectively.

The airframe dynamics are nonlinear. The following equation shows the nonlinear components added
to the state space equation.

ẋ = Ax + Bu +

−gsinθ
gcosθsinϕ
gcosθcosϕ

0
0
0

qcosϕ− rsinϕ
(qsinϕ + rcosϕ) ⋅ tanθ

Nonlinear Component of the State-Space Equation

To see the numerical values for A and B, type

load lqrpilot
A, B

at the MATLAB prompt.

Trimming

For LQG design purposes, the nonlinear dynamics are trimmed at ϕ = 15∘ and p, q, r, and θ set to
zero. Since u, v, and w do not enter into the nonlinear term in the preceding figure, this amounts to
linearizing around (θ, ϕ) = (0, 15∘) with all remaining states set to zero. The resulting state matrix of
the linearized model is called A15.

Problem Definition
The goal to perform a steady coordinated turn, as shown in this figure.

Aircraft Making a 60° Turn

 Design an LQR Servo Controller in Simulink

4-79

To achieve this goal, you must design a controller that commands a steady turn by going through a
60° roll. In addition, assume that θ, the pitch angle, is required to stay as close to zero as possible.

Results
To calculate the LQG gain matrix, K, type

lqrdes

at the MATLAB prompt. Then, start the lqrpilot model with the nonlinear model, sf_aerodyn,
selected.

This figure shows the response of ϕ to the 60° step command.

Tracking the Roll Step Command

As you can see, the system tracks the commanded 60° roll in about 60 seconds.

Another goal was to keep θ, the pitch angle, relatively small. This figure shows how well the LQG
controller did.

Minimizing the Displacement in the Pitch Angle, Theta

4 Designing Compensators

4-80

Finally, this figure shows the control inputs.

Control Inputs for the LQG Tracking Problem

Try adjusting the Q and R matrices in lqrdes.m and inspecting the control inputs and the system
states, making sure to rerun lqrdes to update the LQG gain matrix K. Through trial and error, you
may improve the response time of this design. Also, compare the linear and nonlinear designs to see
the effects of the nonlinearities on the system performance.

See Also

Related Examples
• Kalman Filtering
• “Linear-Quadratic-Gaussian (LQG) Design” on page 4-65
• “Design an LQG Regulator” on page 4-72
• “Design an LQG Servo Controller” on page 4-75

 Design an LQR Servo Controller in Simulink

4-81

State Estimation Using Time-Varying Kalman Filter
This example shows how to estimate states of linear systems using time-varying Kalman filters in
Simulink. You use the Kalman Filter block from the Control System Toolbox library to estimate the
position and velocity of a ground vehicle based on noisy position measurements such as GPS sensor
measurements. The plant model in Kalman filter has time-varying noise characteristics.

Introduction

You want to estimate the position and velocity of a ground vehicle in the north and east directions.
The vehicle can move freely in the two-dimensional space without any constraints. You design a multi-
purpose navigation and tracking system that can be used for any object and not just a vehicle.

 and are the vehicle's east and north positions from the origin, is the vehicle
orientation from east and is the steering angle of the vehicle. is the continuous-time variable.

The Simulink model consists of two main parts: Vehicle model and the Kalman filter. These are
explained further in the following sections.

open_system('ctrlKalmanNavigationExample');

4 Designing Compensators

4-82

Vehicle Model

The tracked vehicle is represented with a simple point-mass model:

where the vehicle states are:

the vehicle parameters are:

and the control inputs are:

The longitudinal dynamics of the model ignore tire rolling resistance. The lateral dynamics of the
model assume that the desired steering angle can be achieved instantaneously and ignore the yaw
moment of inertia.

 State Estimation Using Time-Varying Kalman Filter

4-83

The car model is implemented in the ctrlKalmanNavigationExample/Vehicle Model
subsystem. The Simulink model contains two PI controllers for tracking the desired orientation and
speed for the car in the ctrlKalmanNavigationExample/Speed And Orientation Tracking
subsystem. This allows you to specify various operating conditions for the car and test the Kalman
filter performance.

Kalman Filter Design

Kalman filter is an algorithm to estimate unknown variables of interest based on a linear model. This
linear model describes the evolution of the estimated variables over time in response to model initial
conditions as well as known and unknown model inputs. In this example, you estimate the following
parameters/variables:

where

The terms denote velocities and not the derivative operator. is the discrete-time index. The model
used in the Kalman filter is of the form:

where is the state vector, is the measurements, is the process noise, and is the measurement
noise. Kalman filter assumes that and are zero-mean, independent random variables with known
variances , , and . Here, the A, G, and C matrices are:

where

4 Designing Compensators

4-84

The third row of A and G model the east velocity as a random walk: . In

reality, position is a continuous-time variable and is the integral of velocity over time . The
first row of the A and G represent a discrete approximation to this kinematic relationship:

. The second and fourth rows of the A and G represent
the same relationship between the north velocity and position.

The C matrix represents that only position measurements are available. A position sensor, such as
GPS, provides these measurements at the sample rate of 1Hz. The variance of the measurement noise
, the R matrix, is specified as . Since R is specified as a scalar, the Kalman filter block

assumes that the matrix R is diagonal, its diagonals are 50 and is of compatible dimensions with y. If
the measurement noise is Gaussian, R=50 corresponds to 68% of the position measurements being
within or the actual position in the east and north directions. However, this assumption is
not necessary for the Kalman filter.

The elements of capture how much the vehicle velocity can change over one sample time Ts. The
variance of the process noise w, the Q matrix, is chosen to be time-varying. It captures the intuition
that typical values of are smaller when velocity is large. For instance, going from 0 to 10m/s is
easier than going from 10 to 20m/s. Concretely, you use the estimated north and east velocities and a
saturation function to construct Q[n]:

The diagonals of Q model the variance of w inversely proportional to the square of the estimated
velocities. The saturation function prevents Q from becoming too large or small. The coefficient 250 is
obtained from a least squares fit to 0-5, 5-10, 10-15, 15-20, 20-25m/s acceleration time data for a
generic vehicle. Note that the diagonal Q choice represents a naive assumption that the velocity
changes in the north and east direction are uncorrelated.

Kalman Filter Block Inputs and Setup

The 'Kalman Filter' block is in the Control System Toolbox library in Simulink. It is also in
System Identification Toolbox/Estimators library. Configure the block parameters for
discrete-time state estimation. Specify the following Filter Settings parameters:

• Time domain: Discrete-time. Choose this option to estimate discrete-time states.

• Select the Use current measurement y[n] to improve xhat[n] check box. This implements the
"current estimator" variant of the discrete-time Kalman filter. This option improves the estimation
accuracy and is more useful for slow sample times. However, it increases the computational cost.
In addition, this Kalman filter variant has direct feedthrough, which leads to an algebraic loop if
the Kalman filter is used in a feedback loop that does not contain any delays (the feedback loop
itself also has direct feedthrough). The algebraic loop can further impact the simulation speed.

Click the Options tab to set the block inport and outport options:

 State Estimation Using Time-Varying Kalman Filter

4-85

• Unselect the Add input port u check box. There are no known inputs in the plant model.

• Select the Output state estimation error covariance Z check box. The Z matrix provides
information about the filter's confidence in the state estimates.

Click Model Parameters to specify the plant model and noise characteristics:

• Model source: Individual A, B, C, D matrices.

• A: A. The A matrix is defined earlier in this example.

• C: C. The C matrix is defined earlier in this example.

• Initial Estimate Source: Dialog

• Initial states x[0]: 0. This represents an initial guess of 0 for the position and velocity estimates
at t=0s.

• State estimation error covariance P[0]: 10. Assume that the error between your initial guess
x[0] and its actual value is a random variable with a standard deviation .

4 Designing Compensators

4-86

• Select the Use G and H matrices (default G=I and H=0) check box to specify a non-default G
matrix.

• G: G. The G matrix is defined earlier in this example.

• H: 0. The process noise does not impact the measurements y entering the Kalman filter block.

• Unselect the Time-invariant Q check box. The Q matrix is time-varying and is supplied through
the block inport Q. The block uses a time-varying Kalman filter due to this setting. You can select
this option to use a time-invariant Kalman filter. A time-invariant Kalman filter performs slightly
worse for this problem, but is easier to design and has a lower computational cost.

• R: R. This is the covariance of the measurement noise . The R matrix is defined earlier in this
example.

• N: 0. Assume that there is no correlation between process and measurement noises.

• Sample time (-1 for inherited): Ts, which is defined earlier in this example.

 State Estimation Using Time-Varying Kalman Filter

4-87

4 Designing Compensators

4-88

Results

Test the performance of the Kalman filter by simulating a scenario where the vehicle makes the
following maneuvers:

• At t = 0 the vehicle is at , and is stationary.

• Heading east, it accelerates to 25m/s. It decelerates to 5m/s at t=50s.

• At t = 100s, it turns toward north and accelerates to 20m/s.

• At t = 200s, it makes another turn toward west. It accelerates to 25m/s.

• At t = 260s, it decelerates to 15m/s and makes a constant speed 180 degree turn.

Simulate the Simulink model. Plot the actual, measured and Kalman filter estimates of vehicle
position.

sim('ctrlKalmanNavigationExample');

figure;
% Plot results and connect data points with a solid line.
plot(x(:,1),x(:,2),'bx',...
 y(:,1),y(:,2),'gd',...
 xhat(:,1),xhat(:,2),'ro',...
 'LineStyle','-');
title('Position');
xlabel('East [m]');
ylabel('North [m]');
legend('Actual','Measured','Kalman filter estimate','Location','Best');
axis tight;

 State Estimation Using Time-Varying Kalman Filter

4-89

The error between the measured and actual position as well as the error between the Kalman filter
estimate and actual position is:

% East position measurement error [m]
n_xe = y(:,1)-x(:,1);
% North position measurement error [m]
n_xn = y(:,2)-x(:,2);
% Kalman filter east position error [m]
e_xe = xhat(:,1)-x(:,1);
% Kalman filter north position error [m]
e_xn = xhat(:,2)-x(:,2);

figure;
% East Position Errors
subplot(2,1,1);
plot(t,n_xe,'g',t,e_xe,'r');
ylabel('Position Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xe,1)/numel(n_xe)),sprintf('Kalman f.: %.3f',norm(e_xe,1)/numel(e_xe)));
axis tight;
% North Position Errors
subplot(2,1,2);
plot(t,y(:,2)-x(:,2),'g',t,xhat(:,2)-x(:,2),'r');
ylabel('Position Error - North [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xn,1)/numel(n_xn)),sprintf('Kalman f: %.3f',norm(e_xn,1)/numel(e_xn)));
axis tight;

4 Designing Compensators

4-90

The plot legends show the position measurement and estimation error (and)
normalized by the number of data points. The Kalman filter estimates have about 25% percent less
error than the raw measurements.

The actual velocity in the east direction and its Kalman filter estimate is shown below in the top plot.
The bottom plot shows the estimation error.

e_ve = xhat(:,3)-x(:,3); % [m/s] Kalman filter east velocity error
e_vn = xhat(:,4)-x(:,4); % [m/s] Kalman filter north velocity error
figure;
% Velocity in east direction and its estimate
subplot(2,1,1);
plot(t,x(:,3),'b',t,xhat(:,3),'r');
ylabel('Velocity - East [m]');
xlabel('Time [s]');
legend('Actual','Kalman filter','Location','Best');
axis tight;
subplot(2,1,2);
% Estimation error
plot(t,e_ve,'r');
ylabel('Velocity Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Kalman filter: %.3f',norm(e_ve,1)/numel(e_ve)));
axis tight;

 State Estimation Using Time-Varying Kalman Filter

4-91

The legend on the error plot shows the east velocity estimation error normalized by the
number of data points.

The Kalman filter velocity estimates track the actual velocity trends correctly. The noise levels
decrease when the vehicle is traveling at high velocities. This is in line with the design of the Q
matrix. The large two spikes are at t=50s and t=200s. These are the times when the car goes through
sudden deceleration and a sharp turn, respectively. The velocity changes at those instants are much
larger than the predictions from the Kalman filter, which is based on its Q matrix input. After a few
time-steps, the filter estimates catch up with the actual velocity.

Summary

You estimated the position and velocity of a vehicle using the Kalman filter block in Simulink. The
process noise dynamics of the model were time-varying. You validated the filter performance by
simulating various vehicle maneuvers and randomly generated measurement noise. The Kalman filter
improved the position measurements and provided velocity estimates for the vehicle.

bdclose('ctrlKalmanNavigationExample');

See Also

Related Examples
• Kalman Filtering

4 Designing Compensators

4-92

	Product Overview
	Control System Toolbox Product Description
	Key Features

	Building Models
	Linear (LTI) Models
	What Is a Plant?
	Linear Model Representations
	SISO Example: The DC Motor
	Building SISO Models
	Constructing Discrete Time Systems
	Adding Delays to Linear Models
	LTI Objects

	MIMO Models
	State-Space Model of Jet Transport Aircraft
	Constructing MIMO Transfer Functions
	Accessing I/O Pairs in MIMO Systems

	Arrays of Linear Models
	Model Characteristics
	Interconnecting Linear Models
	Arithmetic Operations for Interconnecting Models
	Feedback Interconnections

	Converting Between Continuous- and Discrete- Time Systems
	Available Commands for Continuous/Discrete Conversion
	Available Methods for Continuous/Discrete Conversion
	Digitizing the Discrete DC Motor Model

	Reducing Model Order
	Model Order Reduction Commands
	Techniques for Reducing Model Order
	Example: Gasifier Model

	Analyzing Models
	Linear Analysis Using the Linear System Analyzer
	Simulate Models with Arbitrary Inputs and Initial Conditions
	What is the Linear Simulation Tool?
	Opening the Linear Simulation Tool
	Working with the Linear Simulation Tool
	Importing Input Signals
	Example: Loading Inputs from a Microsoft Excel Spreadsheet
	Example: Importing Inputs from the Workspace
	Designing Input Signals
	Specifying Initial Conditions

	Designing Compensators
	Choosing a PID Controller Design Tool
	Designing PID Controllers with PID Tuner
	PID Tuner Overview
	PID Controller Type
	PID Controller Form

	Analyze Design in PID Tuner
	Plot System Responses
	View Numeric Values of System Characteristics
	Refine the Design

	PID Controller Design for Fast Reference Tracking
	Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)
	Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)
	Interactively Estimate Plant Parameters from Response Data
	Preprocess Data
	Ways to Preprocess Data
	Remove Offset
	Scale Data
	Extract Data
	Filter Data
	Resample Data
	Replace Data

	PID Tuning Algorithm
	System Identification for PID Control
	Plant Identification
	Linear Approximation of Nonlinear Systems for PID Control
	Linear Process Models
	Advanced System Identification Tasks

	Input/Output Data for Identification
	Data Preparation
	Data Preprocessing

	Choosing Identified Plant Structure
	Process Models
	State-Space Models
	Existing Plant Models
	Switching Between Model Structures
	Estimating Parameter Values
	Handling Initial Conditions

	Pole Placement
	State-Feedback Gain Selection
	State Estimator Design
	Pole Placement Tools
	Caution

	Linear-Quadratic-Gaussian (LQG) Design
	Linear-Quadratic-Gaussian (LQG) Design for Regulation
	Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with Integral Action

	Design an LQG Regulator
	Design an LQG Servo Controller
	Design an LQR Servo Controller in Simulink
	State-Space Equations for an Airframe
	Trimming
	Problem Definition
	Results

	State Estimation Using Time-Varying Kalman Filter

